DOI QR코드

DOI QR Code

Alumina Templates on Silicon Wafers with Hexagonally or Tetragonally Ordered Nanopore Arrays via Soft Lithography

  • Park, Man-Shik (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Yu, Gui-Duk (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Shin, Kyu-Soon (Department of Chemical and Biological Engineering, Seoul National University)
  • Received : 2011.10.15
  • Accepted : 2011.11.03
  • Published : 2012.01.20

Abstract

Due to the potential importance and usefulness, usage of highly ordered nanoporous anodized aluminum oxide can be broadened in industry, when highly ordered anodized aluminum oxide can be placed on a substrate with controlled thickness. Here we report a facile route to highly ordered nanoporous alumina with the thickness of hundreds-of-nanometer on a silicon wafer substrate. Hexagonally or tetragonally ordered nanoporous alumina could be prepared by way of thermal imprinting, dry etching, and anodization. Adoption of reusable polymer soft molds enabled the control of the thickness of the highly ordered porous alumina. It also increased reproducibility of imprinting process and reduced the expense for mold production and pattern generation. As nanoporous alumina templates are mechanically and thermally stable, we expect that the simple and costeffective fabrication through our method would be highly applicable in electronics industry.

Keywords

References

  1. Kang, Y.; Walish, J. J.; Gorishnyy, T.; Thomas, E. L. Nat. Mater. 2007, 6, 957. https://doi.org/10.1038/nmat2032
  2. deHeer, W. A.; Bonard, J. M.; Fauth, K.; Chatelain, A.; Forro, L.; Ugarte, D. Adv. Mater. 1997, 9, 87. https://doi.org/10.1002/adma.19970090122
  3. Masuda, H.; Yamada, M.; Matsumoto, F.; Yokoyama, S.; Mashiko, S.; Nakao, M.; Nishio, K. Adv. Mater. 2006, 18, 213. https://doi.org/10.1002/adma.200401940
  4. Thurn-Albrecht, T.; Schotter, J.; Kastle, C. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126. https://doi.org/10.1126/science.290.5499.2126
  5. Tsou, P. H.; Sreenivasappa, H.; Hong, S.; Yasuike, M.; Miyamoto, H.; Nakano, K.; Misawa, T.; Kameoka, J. Biosens. Bioelectron. 2010, 26, 289. https://doi.org/10.1016/j.bios.2010.06.034
  6. Byun, J.; Lee, J. I.; Kwon, S.; Jeon, G.; Kim, J. K. Adv. Mater. 2010, 22, 2028. https://doi.org/10.1002/adma.200903763
  7. Lee, K. J.; Min, S. H.; Jang, J. Small 2008, 4, 1945. https://doi.org/10.1002/smll.200800016
  8. Massuyeau, F.; Duvail, J.; Athalin, H.; Lorcy, J.; Lefrant, S.; Wery, J.; Faulques, E. Nanotechnology 2009, 20, 155701. https://doi.org/10.1088/0957-4484/20/15/155701
  9. Masuda, H.; Fukuda, K. Science 1995, 268, 1466. https://doi.org/10.1126/science.268.5216.1466
  10. Masuda, H.; Asoh, H.; Watanabe, M.; Nishio, K.; Nakao, M.; Tamamura, T. Adv. Mater. 2001, 13, 189. https://doi.org/10.1002/1521-4095(200102)13:3<189::AID-ADMA189>3.0.CO;2-Z
  11. Yanagishita, T.; Nishio, K.; Masuda, H. Adv. Mater. 2005, 17, 2241. https://doi.org/10.1002/adma.200500249
  12. Krausch, G.; Magerle, R. Adv. Mater. 2002, 14, 1579. https://doi.org/10.1002/1521-4095(20021104)14:21<1579::AID-ADMA1579>3.0.CO;2-6
  13. Yang, S. M.; Jang, S. G.; Choi, D. G.; Kim, S.; Yu, H. K. Small 2006, 2, 458. https://doi.org/10.1002/smll.200500390
  14. Vieu, C.; Carcenac, F.; Pepin, A.; Chen, Y.; Mejias, M.; Lebib, A.; Manin-Ferlazzo, L.; Couraud, L.; Launois, H. Appl. Surf. Sci. 2000, 164, 111. https://doi.org/10.1016/S0169-4332(00)00352-4
  15. Li, A.; Muller, F.; Birner, A.; Nielsch, K.; Gosele, U. J. Appl. Phys. 1998, 84, 6023. https://doi.org/10.1063/1.368911
  16. Losic, D.; Lillo, M.; Losic, D., Jr. Small 2009, 5, 1392. https://doi.org/10.1002/smll.200801645
  17. Jessensky, O.; Muller, F.; Gosele, U. Appl. Phys. Lett. 1998, 72, 1173. https://doi.org/10.1063/1.121004
  18. Masuda, H.; Satoh, M. Jpn. J. Appl. Phys., Part 2 1996, 35, L126. https://doi.org/10.1143/JJAP.35.L126
  19. Lee, W.; Ji, R.; Ross, C. A.; Gosele, U.; Nielsch, K. Small 2006, 2, 978. https://doi.org/10.1002/smll.200600100
  20. Lipson, A.; Comstock, D.; Hersam, M. Small 2009, 5, 2807. https://doi.org/10.1002/smll.200901151
  21. Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T. Appl. Phys. Lett. 1997, 71, 2770. https://doi.org/10.1063/1.120128
  22. Matsui, Y.; Nishio, K.; Masuda, H. Small 2006, 2, 522. https://doi.org/10.1002/smll.200500440
  23. Maria Chong, A. S.; Tan, L. K.; Deng, J.; Gao, H. Adv. Funct. Mater. 2007, 17, 1629. https://doi.org/10.1002/adfm.200600993
  24. Nasir, M. E.; Allsopp, D. W. E.; Bowen, C. R.; Hubbard, G.; Parsons, K. P. Nanotechnology 2010, 21, 105303. https://doi.org/10.1088/0957-4484/21/10/105303
  25. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Science 1996, 272, 85. https://doi.org/10.1126/science.272.5258.85
  26. Park, S. H.; Kim, S.; Lee, D. J.; Yun, S.; Khim, Z. G.; Kim, K. B. J. Electrochem. Soc. 2009, 156, K181. https://doi.org/10.1149/1.3207011
  27. Lee, M. J.; Lee, N. Y.; Lim, J. R.; Kim, J. B.; Kim, M.; Baik, H. K.; Kim, Y. S. Adv. Mater. 2006, 18, 3115. https://doi.org/10.1002/adma.200601268
  28. Choi, S. J.; Yoo, P. J.; Baek, S. J.; Kim, T. W.; Lee, H. H. J. Am. Chem. Soc. 2004, 126, 7744. https://doi.org/10.1021/ja048972k
  29. Fujiwara, Y.; Enomoto, H. Surf. Coat. Tech. 1988, 35, 101. https://doi.org/10.1016/0257-8972(88)90061-8
  30. Felhosi, I.; Habazaki, H.; Shimizu, K.; Skeldon, P.; Thompson, G.; Wood, G.; Zhou, X. Corros. Sci. 1998, 40, 2125. https://doi.org/10.1016/S0010-938X(98)00098-5
  31. Xu, C.; Gao, W. Mater. Res. Innov. 2000, 3, 231. https://doi.org/10.1007/s100190050008
  32. Foong, T. R. B.; Sellinger, A.; Hu, X. ACS nano 2008, 2, 2250. https://doi.org/10.1021/nn800435n
  33. Mozalev, A.; Khatko, V.; Bittencourt, C.; Hassel, A. W.; Gorokh, G.; Llobet, E.; Correig, X. Chem. Mater. 2008, 20, 6482. https://doi.org/10.1021/cm801481z
  34. Zhao, G. Y.; Xu, C. L.; Li, H. L. J. Power Sources 2007, 163, 1132. https://doi.org/10.1016/j.jpowsour.2006.09.085

Cited by

  1. Constrained Order in Nanoporous Alumina with High Aspect Ratio: Smart Combination of Interference Lithography and Hard Anodization vol.24, pp.13, 2013, https://doi.org/10.1002/adfm.201303268
  2. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis vol.3, pp.2296-4185, 2015, https://doi.org/10.3389/fbioe.2015.00075
  3. Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth vol.6, pp.1, 2016, https://doi.org/10.1038/srep18967