DOI QR코드

DOI QR Code

Interaction of Apidaecin Ib with Phospholipid Bilayers and its Edwardsiella Species-specific Antimicrobial Activity

  • Seo, Jung-Kil (Department of Biotechnology, Pukyong National University) ;
  • Go, Hye-Jin (Department of Biotechnology, Pukyong National University) ;
  • Moon, Ho-Sung (Department of Biotechnology, Pukyong National University) ;
  • Lee, Min-Jeong (Department of Biotechnology, Pukyong National University) ;
  • Hong, Yong-Ki (Department of Biotechnology, Pukyong National University) ;
  • Jeong, Hyun-Do (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Nam, Bo-Hye (Biotechnology Research Division, Aquaculture Industry Department, National Fisheries Research and Development Institute) ;
  • Park, Tae-Hyun (West Vancouver Secondary School) ;
  • Park, Nam-Gyu (Department of Biotechnology, Pukyong National University)
  • Received : 2011.10.05
  • Accepted : 2011.11.10
  • Published : 2012.01.20

Abstract

Apidaecin Ib had strong antimicrobial activity against several tested Gram-negative bacteria including Escherichia coli, Enterobacter cloacae, and Shigella flexneri (MECs; $0.3-1.5{\mu}g/mL$), but showed no activity against all the tested Gram-positive bacteria including Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and one yeast, Candida albicans (MECs; > $125{\mu}g/mL$). Interestingly, this peptide showed potent antibacterial activity only against Edwardsiella species (MECs; $0.6-3.6{\mu}g/mL$) among the tested fish pathogenic bacteria through a bacteriostatic process and showed no significant hemolytic activity. Apidaecin Ib took an unordered structure in all environments and also had very weak membrane perturbation activity even at $25{\mu}M$. Anti-Edwardsiella activity of apidaecin Ib is stronger than those of other antimicrobial polypeptides or antibiotics, but its activity is salt-sensitive. These results suggest that apidaecin Ib has Edwardsiella speciesspecific antibacterial activity and could be applied as new preventive or control additives for Edwardsiella species infection in freshwater fish aquaculture.

Keywords

References

  1. Bachere, E. Aquaculture 2003, 227, 427. https://doi.org/10.1016/S0044-8486(03)00521-0
  2. Hancock, R. E. W.; Chapple, D. S. Antimicrob. Agents Chemother. 1999, 43, 1317.
  3. Zasloff, M. Nature 2002, 415, 389. https://doi.org/10.1038/415389a
  4. Joerger, R. D. Poultry Science 2003, 82, 640. https://doi.org/10.1093/ps/82.4.640
  5. Noga, E. J.; Ullal, A. J.; Corrales, J.; Fernandes, J. M. Comp. Biochem. Physiol. D 2011, 6, 44.
  6. Austin, B.; Austin, D. A. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. Praxis Publishing Ltd, Chichester, U.K. 1999.
  7. Casteels, P.; Tempst, P. Biochem. Biophys. Res. Commun. 1994, 199, 339. https://doi.org/10.1006/bbrc.1994.1234
  8. Casteels, P.; Ampe, C.; Jacobs, F.; Vaeck, M.; Tempst, P. EMBO J. 1989, 8, 2387.
  9. Li, W. F.; Ma, G. X.; Zhou, X. X. Peptides 2006, 27, 2350. https://doi.org/10.1016/j.peptides.2006.03.016
  10. Zhou, X.-X.; Wang, Y.-B.; Li, W.-F. Aquaculture 2008, 279, 108. https://doi.org/10.1016/j.aquaculture.2008.04.024
  11. Mainous, M. E.; Smith, S. A.; Kuhn, D. D. J. Aquat. Anim. Health 2010, 22, 224. https://doi.org/10.1577/H10-020.1
  12. Stock, I.; Wiedemann, B. Antimicrob. Agents Chemother. 2001, 45, 2245. https://doi.org/10.1128/AAC.45.8.2245-2255.2001
  13. Rao, P. S.; Lim, T. M.; Leung, K. Y. Infect. Immun. 2001, 69, 5689. https://doi.org/10.1128/IAI.69.9.5689-5697.2001
  14. Kusuda, R.; Kawai, K. Fish Pathol. 1998, 33, 221. https://doi.org/10.3147/jsfp.33.221
  15. Ye, S.; Lia, H.; Qiao, G.; Lia, Z. Aquaculture 2009, 292, 6. https://doi.org/10.1016/j.aquaculture.2009.03.036
  16. Mogi, T.; Kita, K. Cell. Mol. Life Sci. 2009, 66, 3821. https://doi.org/10.1007/s00018-009-0129-9
  17. Ho, C. L.; Hwang, L. L. Biochem. J. 1991, 274, 453. https://doi.org/10.1042/bj2740453
  18. Silphaduang, U.; Noga, E. J. Nature 2001, 414, 268. https://doi.org/10.1038/35104690
  19. Noga, E. J.; Silphaduang, U.; Park, N. G.; Seo, J.-K.; Stephenson, J.; Kozowicz, S. Comp. Biochem. Physiol. B 2009, 15, 299.
  20. Seo, J.-K.; Crawford, J. M.; Stone, K. L.; Noga, E. J. Biochem. Biophys. Res. Commun. 2005, 338, 1998. https://doi.org/10.1016/j.bbrc.2005.11.013
  21. Zhao, C.; Nguyen, T.; Boo, L. M.; Hong, T.; Espiritu, C.; Orlov, D.; Wang, W.; Waring, A.; Lehrer, R. I. Antimicrob. Agents Chemother. 2001, 45, 2695. https://doi.org/10.1128/AAC.45.10.2695-2702.2001
  22. Park, K. H.; Jeong, H. D. Aquaculture 1996, 143, 135. https://doi.org/10.1016/0044-8486(95)01224-9
  23. Yoo, M. H.; Huh, M.-D.; Kim, E.-H.; Lee, H.-H.; Jeong, H. D. Aquaculture 2003, 217, 11. https://doi.org/10.1016/S0044-8486(02)00169-2
  24. Patrzykat, A.; Gallant, J. W.; Seo, J.-K.; Pytyck, J.; Douglas, S. E. Antimicrob. Agents Chemother. 2003, 47, 2464. https://doi.org/10.1128/AAC.47.8.2464-2470.2003
  25. Park, N. G.; Seo, J.-K.; Ku, H.-J.; Lee, S.; Sugihara, G.; Kim, K. H.; Park, J.-S.; Kang, S. W. Bull. Korean Chem. Soc. 1997, 18, 50.
  26. Park, N. G.; Silphaduang, U.; Moon, H. S.; Seo, J-K.; Corrales, J.; Noga, E. J. Biochemistry 2011, 50, 3288. https://doi.org/10.1021/bi101395j
  27. Andreu, D.; Rivas, L. Biopolymers 1998, 47, 415. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
  28. Reger, P. J.; Mockler, D. F.; Miller, M. A. J. Med. Microbiol. 1993, 39, 273. https://doi.org/10.1099/00222615-39-4-273
  29. Reinhardt, J. F.; Fowlston, S.; Jones, J.; Georege, W. L. Antimicrob. Agents Chemother. 1985, 27, 966. https://doi.org/10.1128/AAC.27.6.966
  30. Hancock, R. E. W. J. Antimicrob. Agents Chemother. 1981, 8, 429. https://doi.org/10.1093/jac/8.6.429
  31. Nomura, J.; Aoki, T. Fish Pathol. 1985, 20, 193. https://doi.org/10.3147/jsfp.20.193
  32. Corrales, J.; Ullal, A.; Noga, E. J. J. Fish Dis. 2009, 32, 705. https://doi.org/10.1111/j.1365-2761.2009.01069.x
  33. Marr, A. K.; Gooderham, W. J.; Hancock, R. E. W. Curr. Opin. Pharmacol. 2006, 6, 468. https://doi.org/10.1016/j.coph.2006.04.006
  34. Bals, R.; Goldman, M. J.; Wilson, J. M. Infect. Immun. 1998, 66, 1225.
  35. Lysenko, E. S.; Gould, J.; Bals, R.; Wilson, J. M.; Weiser, J. N. Infect. Immun. 2000, 68, 1664. https://doi.org/10.1128/IAI.68.3.1664-1671.2000
  36. Park, I. Y.; Cho, J. H.; Kim, K. S.; Kim, Y. B.; Kim, M. S.; Kim, S. C. J. Biol. Chem. 2004, 279, 13896. https://doi.org/10.1074/jbc.M311418200
  37. Tam, J. P.; Lu, Y. A.; Yang, J. L. J. Biol. Chem. 2002, 277, 50450. https://doi.org/10.1074/jbc.M208429200
  38. Waltman, W. D.; Shotts, E. B. Vet. Microbiol. 1986, 12, 277. https://doi.org/10.1016/0378-1135(86)90056-8
  39. Gobbo, M.; Biondi, L.; Filira, F.; Gennaro, R.; Benincasa, M.; Scolaro, B.; Rocchi, R. J. Med. Chem. 2002, 45, 4494. https://doi.org/10.1021/jm020861d
  40. Powers, J.-P. S.; Hancock, R. E. W. Peptides 2003, 24, 1681. https://doi.org/10.1016/j.peptides.2003.08.023

Cited by

  1. Antimicrobial Activity and Action Mechanisms of Arg-Rich Short Analog Peptides Designed from the C-Terminal Loop Region of American Oyster Defensin (AOD) vol.19, pp.8, 2021, https://doi.org/10.3390/md19080451