Morita-Baylis-Hillman Route to Dimethyl 2,3-Dihydrobenzo[b]oxepine-2,4dicarboxylates and Methyl 2-(2-Carbomethoxybenzo[b]furan-3-yl)propanoates from Salicylaldehydes

Sang-Hyun Ahn, Seung Soon Jang, Young Keun Kim, and Kee-Jung Lee*
Department of Chemical Engineering, Hanyang University, Seoul 133-791, Korea. "E-mail: leekj@hanyang.ac.kr Received November 17, 2011, Accepted November 21, 2011

Abstract

A new synthetic method for dimethyl 2,3-dihydrobenzo[b]oxepine-2,4-dicarboxylates and methyl 2-(2-carbomethoxybenzo[b]furan-3-yl)propanoates by an intramolecular conjugate displacement reaction or an $\mathrm{S}_{\mathrm{N}} 2$ reaction of acetates of Morita-Baylis-Hillman adducts of methyl (2-formylphenoxy)acetates has been described.

Key Words : Morita-Baylis-Hillman, $\mathrm{S}_{\mathrm{N}} 2-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ Reaction, 2,3-Dihydrobenzo[b]oxepines, Benzo[b]furans, Methyl (2-formylphenoxy)acetates.

Introduction

Medium-sized oxacycles, 1-benzoxepine ${ }^{1}$ and 2-benzoxepine ${ }^{2}$ are important structural units present in numerous biologically active molecules. ${ }^{3}$ Especially 2,3-dihydro-1benzoxepines were investigated in order to develop orally active CCR5 antagonists as a novel scaffold. ${ }^{4}$ The several synthetic methods towards 2,3-dihydro-1-benzoxepines include ring-closing metathesis (RCM) of bis-olefins, ${ }^{5}$ RCM of titanium-carbene complexes of diphenyl thioacetals having a carbon-carbon double bond, ${ }^{6}$ Wittig reaction of carboethoxycyclopropyltriphenylphosphonium fluoroborate with salicylaldehyde, ${ }^{7}$ Dieckmann condensation of diester of salicylic acid, ${ }^{8}$ Claisen-type condensation of o-formylphenoxybutyrate, ${ }^{9}$ palladium-catalyzed [5+2] annulations from 2aroylmethoxyboronic acid and alkyne, ${ }^{10}$ and palladiumcatalyzed intramolecular carboesterification of 3-(2-allyloxyphenyl)propiolic acid. ${ }^{11}$
Also, benzofuran-2-carboxylates, benzofuran-3-yl-acetates and their derivatives display interesting physiological activities and have found potential therapeutic applications. ${ }^{12}$ In addition, these were used to develop organic nonlinear optical cyan dyes for electro-optic devices. ${ }^{13}$ The substituted benzofuran-2-carboxylates were prepared by the reaction of the appropriate salicylaldehyde with alkyl haloacetate in anhydrous dimethylformamide (DMF) at $130^{\circ} \mathrm{C}$ in the presence of potassium carbonate ${ }^{14}$ (Equation 1). Benzo-furan-3-yl-acetic acid derivatives were prepared by an baseassisted ring-opening and ring-closing process of 4-chloro-methyl- 2 H -chromen-2-ones, which were readily obtained from the reaction of ethyl 4-chloroacetoacetate with phenols in acidic conditions. ${ }^{15}$

The Morita-Baylis-Hillman (MBH) reaction ${ }^{16}$ has attracted attention of organic chemists in recent years. This reaction provides synthetically useful multifunctional molecules which have been employed in various heterocycles syntheses. Among them MBH adducts of salicylaldehydes or $O-$ benzyl-protected salicylaldehydes with acrylic acid esters or cycloalkenones were successfully used for the syntheses of 3-substituted coumarins, ${ }^{17}$ tetrahydroxanthenones, ${ }^{18}$ and 2-oxo-2,3-dihydrobenzo $[b]$ oxepines. ${ }^{19}$ During the continuing efforts for the development of MBH chemistry, ${ }^{20}$ we envisioned that we could synthesize the 2,3-dihydrobenzo $[b]$ oxepines 5 and benzo[$b]$ furan derivatives 9 from the acetates of MBH adducts of methyl (2-formylphenoxy)acetates $\mathbf{2}$ via an intramolecular conjugate displacement (ICD) reaction ${ }^{21}$ or $\mathrm{S}_{\mathrm{N}} 2$ mechanism, respectively, as shown in Scheme 1.

Results and Discussion

The required key starting material methyl (2-formylphenoxy)acetates 2 were prepared by the reaction of salicylaldehydes 1 with methyl chloroacetate in the presence of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF at room temperature in 63-94\% yields following the earlier procedure. ${ }^{22}$ The MBH reaction of 2 with methyl acrylate, 1,4-diazabicyclo[2,2,2]octane (DABCO), and triethanolamine without solvent at room temperature produced the MBH adducts 3 in 42-72\% yields. The acetylation of $\mathbf{3}$ with acetic anhydride in the presence of N, N-dimethylaminopyridine (DMAP) in dichloromethane at room temperature gave MBH acetates 4 in $90-97 \%$ yields. With the substrate $\mathbf{4 a}$ we examined the ICD reaction under the basic conditions (Table 1). When we first tried to cyclize $\mathbf{4 a}$ to $\mathbf{5 a}$, we used LDA in THF, but obtained a complex mixture (Entry 1). Next we then used NaH in DMSO at room temperature. This experiment gave the desired product dimethyl 2,3-dihydrobenzo[b]oxepine-2,4-dicarboxylate (5a) in very low yield (8\%) along with the rearranged product methyl 2-acetoxymethyl-3-[2-(carbomethoxymeth-

yloxy)phenyl]propenoate (6a) (26\%) (Entry 2). Sodium hydride-THF system was also unsuccessful at reflux temperature, only starting acetate 4a was recovered. Accordingly, we then tried a weaker base and selected $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in THF. Compound $4 \mathbf{4}$ did not react at room temperature, but at reflux temperature the reaction occurred to give the expected product 5 a in 50% yield (Entry 5). We also explored $\mathrm{K}_{2} \mathrm{CO}_{3}-$

Table 1. Reaction of $\mathbf{4 a}$ under various basic conditions ${ }^{a}$

Entry	Base	Solvent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Product $(\% \text { yield })^{b}$
1	LDA	THF	-78 to -10	4	decomp.
2	NaH	DMSO	rt	24	$\mathbf{5 a}(8)$
					$\mathbf{6 a ~ (2 6)}$
3	NaH	THF	reflux	48	n.r. ${ }^{c}$
4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	rt	24	n.r.
5	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	reflux	26	$\mathbf{5 a}(50)$
6	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	THF	reflux	24	n.r.
7	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$\mathrm{CH} \mathrm{CN}_{3} \mathrm{CN}$	reflux	3	$\mathbf{6 a ~ (3 4)}$
8	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF	$67-70$	3	$\mathbf{9 a}(31)$
9	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMAc	$67-70$	17	$\mathbf{9 a}(10)$
10	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMSO	$67-70$	4	$\mathbf{9 a}(8)$

${ }^{a}$ Reaction conditions: $\mathbf{4 a}(1 \mathrm{mmol})$, base $(2.2 \mathrm{mmol})$, solvent $(5 \mathrm{~mL})$.
${ }^{b}$ Isolated yields based on $\mathbf{4 a} .{ }^{c}$ n.r $=$ no reaction.

THF and $\mathrm{Cs}_{2} \mathrm{CO}_{3}-\mathrm{CH}_{3} \mathrm{CN}$ systems at reflux temperature. No reaction occurred in $\mathrm{K}_{2} \mathrm{CO}_{3}$-THF system (Entry 6) and the only rearranged product $\mathbf{6 a}$ was obtained in 34% yield in $\mathrm{Cs}_{2} \mathrm{CO}_{3}-\mathrm{CH}_{3} \mathrm{CN}$ system (Entry 7). Next we examined $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in aprotic polar solvents such as DMF, DMAc, and DMSO at $67-70^{\circ} \mathrm{C}$ (Entries 8-10). In these reactions, $\mathbf{5 a}$ was not produced. Instead an unexpected benzofuran 9a was isolated in $31 \%, 10 \%$, and 8% yields, respectively. As shown in Table 1, the yields are generally low, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in THF and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in DMF turned out to be preferred conditions giving 2,3-dihydrobenzo $[b]$ oxepine 5a and benzo[$b]$ furan 9a, respectively. With this result in hand, the reactions of other MBH acetates $\mathbf{4 b} \mathbf{b}$ g were carried out with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in THF and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in DMF, and the results are summarized in Table 2. The MBH acetates bearing electron-donating or electron-withdrawing groups are proceeded equally well and gave only the dihydrobenzo $[b]$ oxepines $\mathbf{5 b} \mathbf{- f}$ in $20-58 \%$ yields under the $\mathrm{Cs}_{2} \mathrm{CO}_{3}$-THF system (Table 2, entries 1-6). The MBH acetate $4 d$ derived from 3-ethoxy-substituted salicylaldehyde $\mathbf{1 d}$ required a longer reaction time (96 h) and gave a lower yield (20%) of the product than those with 5-methoxy-substituted one $\mathbf{4 c}$ (54\%) (Table 2, entries 3 and 4). Interestingly, the 3,5-dichloro-substituted MBH acetate $\mathbf{4 g}$ gave only the benzo[b]furan $\mathbf{9 g}$ in very low yield (21%) under the same reaction condition (Entry 7). It seems that the

Table 2. Synthesis of dimethyl 2,3-dihydrobenzo[b]oxepine-2,4-dicarboxylates 5 and methyl (2-carbomethoxybenzo[b]furan-3-yl)propanoates 9 from MBH acetates $\mathbf{4}^{a}$

	 4		$\left[\right.$ Method $\left.^{2}\right]$ $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, THF reflux or $[$ Method B$]$ $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$ $67-70^{\circ} \mathrm{C}$	 5		9	
Entry	Acetate	R ${ }^{1}$	R^{2}	Method	Time (h)	Product (\% yield) ${ }^{\text {b }}$	
						5	9
1	4a	H	H	A	26	5a (50)	n.d. ${ }^{c}$
				B	3	n.d.	9 a (31)
2	4b	Me	H	A	24	5b (58)	n.d.
				B	1	n.d.	9 b (25)
3	4c	MeO	H	A	23	5c (54)	n.d.
				B	10	n.d.	9c (21)
4	4d	H	OEt	A	96	5d (20)	n.d.
				B	48	n.d.	9d (11)
5	4 e	Br	H	A	24	5e (43)	n.d.
				B	3	n.d.	9e (21)
6	4f	Cl	H	A	22	5f (53)	n.d.
				B	5	n.d.	9f (23)
7	4g	Cl	Cl	A	19	n.d.	9g (21)
				B	3	n.d.	9g (24)

${ }^{a}$ Conditions: $\mathbf{4}(1 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(2.2 \mathrm{mmol})$, THF or DMF $(5 \mathrm{~mL}) .{ }^{b}$ Isolated yields based on $4 .{ }^{c}$ n.d. $=$ not detected.
substituent group of 3-position plays an important role in governing the reactivity of the substrates by the stereoelectronic factors.
When we applied $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in DMF to MBH acetates 4b-g, benzofurans $9 \mathbf{9 b - g}$ were obtained in relatively poor yields (11-25\%) along with a considerable amount of the decomposed materials. No dihydrobenzo $[b]$ oxepines $\mathbf{5 b} \mathbf{- g}$ were produced. The formation of $\mathbf{5}$ could be explained by an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction in a 7-endo-trig mode. The formation of 9 could be regarded as an $\mathrm{S}_{\mathrm{N}} 2$ reaction in a 5 -exo-tet mode to form 7 followed by aromatization through sequential proton migration. ${ }^{23}$ The different ring closure mode in THF and DMF solvents is uncertain.

We also examined the rearranged MBH allyl acetate $\mathbf{6 a}$ as a substrate, which was readily prepared from the MBH acetate $\mathbf{4 a}$ with DABCO in refluxing THF, ${ }^{24}$ by the present protocol. On cyclization of $\mathbf{6 a}$ with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in THF at reflux temperature for 48 hours, and with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in DMF at 67-70 ${ }^{\circ} \mathrm{C}$ for 3 hours, the only benzofuran 9 a was produced in poor yields (12% and 6%), respectively, presumably via 5-exotrig mode. Most of the starting material $\mathbf{6 a}$ was decomposed (Scheme 1). In order to increase the yield, we also investigated the reaction of MBH allyl bromide $\mathbf{1 0}$, which was readily obtained from the MBH adduct 3a with N-bromosuccinimide/dimethyl sulfide (NBS/DMS). ${ }^{25}$ On cyclization of $\mathbf{1 0}$ with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in THF at reflux temperature for 29 hours, $\mathbf{5 a}$ was produced in 23% yield. Under the influence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in DMF at $67-70^{\circ} \mathrm{C}$ for 3 hours, the starting material was decomposed completely (Scheme 2). The use of some other basic conditions such as $\mathrm{NaH} / \mathrm{DMF}, \mathrm{NaH} /$

Scheme 2

DMSO, t-BuOK/THF, LDA/THF, and $\mathrm{DBU} / \mathrm{CH}_{3} \mathrm{CN}$ were also ineffective.

With the intent to introduce more diversity in the products employing this strategy, we carried out the MBH reaction of methyl (1-formyl-2-naphthalenyloxy)acetate (11a) ${ }^{26}$ and methyl (2-formyl-1-naphthalenyloxy)acetate (11b) with methyl acrylate. Unfortunately the MBH adducts 12a and 12b were not produced under typical reaction conditions such as DABCO, DMAP or DBU in THF, DMF, and MeOH solvent systems. We also attempted to make the MBH alcohols via selenium-based route. ${ }^{21}$ Thus, methyl 2-phenylselanylpropanoate $(\mathbf{1 3})^{27}$ was deprotonated with LDA in THF, and a THF solution of the aldehyde 11a or 11b was added to the resulting carbanion. However, the alcohols $\mathbf{1 4 a}$ or $\mathbf{1 4 b}$ were not produced at all (Scheme 3).

Scheme 4

Finally, we examined the MBH reaction of thiosalicylaldehyde derivative, methyl (2-formylthiophenoxy)acetate (16) under typical condition, which was readily obtainable from PCC oxidation of methyl (2-hydroxymethylthiophenoxy)acetate (15). ${ }^{28}$ But, the MBH reaction did not occur, instead an intramolecular condensation proceeded slowly under the reaction conditions to give the methyl benzo $[b]$ -thiophene-2-carboxylate ($\mathbf{1 7})^{29}$ in 87\% yield (Scheme 4).

Conclusion

A new method for the synthesis of dimethyl 2,3-dihydrobenzo $[b]$ oxepine-2,4-dicarboxylates and methyl 2-(2-carbo-methoxybenzo[b]furan-3-yl)propanoates by an intramolecular conjugate displacement reaction of acetates of Morita-Baylis-Hillman adducts of methyl (2-formylphenoxy)acetates has been developed. The synthetic yields are generally low, dihydrobenzo[$b]$ oxepines were produced in $\mathrm{Cs}_{2} \mathrm{CO}_{3}$-THF system and benzo[b]furans were given in $\mathrm{Cs}_{2} \mathrm{CO}_{3}$-DMF system, respectively.

Experimental Section

Silica gel 60 (70-230 mesh ASTM) used for column chromatography was supplied by E. Merck. Analytical TLC was carried out on Merck silica gel $60 \mathrm{~F}_{254}$ TLC plates. Melting points were taken using an Electrothermal melting point apparatus and are uncorrected. Elemental analyses were obtained using a Thermo Electron Corporation Flash EA 1112 instrument. Low resolution mass spectra were recorded on a ThermoQuest Polaris Q mass spectrometer operating at 70 eV . IR spectra were recorded on a Nicolet Magna 550 FTIR spectrometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Varian 300 spectrometer in CDCl_{3}. All chemical shifts are reported in ppm relative to TMS. The coupling constants (J) are expressed in Hz .

The known methyl (2-formylphenoxy)acetate (2a), ${ }^{22}$ methyl (2-formyl-4-methylphenoxy)acetate (2b), ${ }^{30}$ methyl (4-bromo-2-formylphenoxy)acetate (2e), ${ }^{22}$ methyl (4-chloro-2-formylphenoxy)acetate (2f), ${ }^{31}$ methyl (1-formyl-2-naphthalenyloxy)acetate (11a), ${ }^{26}$ methyl (2-formyl-1-naphthalenyloxy)acetate (11b), ${ }^{26}$ and methyl (2-hydroxymethylthiophenoxy)acetate ($\mathbf{1 5})^{28}$ were prepared according to the literature procedures. Petroleum ether (PE) used refers to the fraction boiling in the range $30-60^{\circ} \mathrm{C}$.
Methyl (2-Formylphenoxy)acetates 2; General Procedure. A mixture of salicylaldehyde $1(20 \mathrm{mmol})$, methyl chloroacetate ($2.39 \mathrm{~g}, 22 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.14 \mathrm{~g}$, 30 $\mathrm{mmol})$ in anhydrous DMF (20 mL) was stirred at rt for 2-11 h. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (5:1) to produce 2 as a solid. The physical and spectral data of 2 prepared by this general method are listed as follows.

Methyl (2-Formyl-4-methoxyphenoxy)acetate (2c): Reaction time: 11 h ; yield: 94%; white solid; $\mathrm{mp} 70-71{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ PE); IR (KBr): 1764, 1685, 1617, $1494 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.81\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $6.85(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.11 (dd, $J=9.1$ and 3.2 $\mathrm{Hz}, 1 \mathrm{H}$, aromatic), $7.35(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 10.53 $(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.3,55.8,66.4$, $110.5,114.7,123.2,125.9,154.5,154.7,168.9,189.4$; Ms $m / z 224\left(65,\left[\mathrm{M}^{+}\right]\right), 165(70), 151$ (100), 150 (99), 136 (28), 135 (48), 123 (57); Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}: \mathrm{C}, 58.93$; H, 5.39. Found: C, 58.69; H, 5.52 .

Methyl (2-Ethoxy-6-formylphenoxy)acetate (2d): Reaction time: 2 h ; yield: 92%; white solid; $\mathrm{mp} 80-81^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ PE); IR (KBr): 1758, 1687, 1585, $1473 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$: $\delta 1.47\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.10\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.11-7.13 ($\mathrm{m}, 2 \mathrm{H}$, aromatic), 7.40-7.45 ($\mathrm{m}, 1 \mathrm{H}$, aromatic), $10.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.7,52.0$, $64.6,69.4,118.8,119.0,124.3,129.8,150.1,151.0,169.8$, 190.7; Ms m/z 238 (100, [M $\left.{ }^{+}\right]$), 179 (28), 165 (18), 149 (17); Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}: \mathrm{C}, 60.50$; H, 5.92. Found: C, 60.34; H, 5.79.

Methyl (2,4-Dichloro-6-formylphenoxy)acetate (2g): Reaction time: 2 h ; yield: 63%; white solid; mp $115-116{ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}$); IR (KBr): 1753, 1692, $1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.61$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.75(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $10.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 52.6, 70.1, 127.0, 128.7, 131.3, 132.1, 135.8, 155.3, 168.9, 188.4; Ms $m / z 264$ (7), 262 (18, [M $\left.{ }^{+}\right]$), 232 (20), 230 (31), 205 (67), 203 (100), 191 (65), 190 (62), 189 (78), 188 (24); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{4}$: C, 45.66 ; H, 3.07. Found: C, 45.31; H, 3.35 .

Morita-Baylis-Hillman Adducts 3; General Procedure. A mixture of $2(10 \mathrm{mmol})$, methyl acrylate $(2.70 \mathrm{~mL}, 30$ $\mathrm{mmol})$, DABCO ($1.12 \mathrm{~g}, 10 \mathrm{mmol}$), and triethanolamine $(1.19 \mathrm{~g}, 8 \mathrm{mmol})$ was stirred at rt for 6 h to 12 d . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (2:1) to produce 3. The physical and spectral data of $\mathbf{3}$ prepared by this general method are listed as follows.

Methyl 3-[2-(Carbomethoxymethyloxy)]phenyl-3-hydroxy-2-methylenepropanoate (3a): Reaction time: 6 d ; yield: 48%; colorless oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $3485,1759,1741$, $1722,1631,1490,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{OH}), 4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $6.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), ~ 6.77-6.80(\mathrm{~m}, 1 \mathrm{H}$, aromatic), 6.98-7.03 (m, 1 H , aromatic), 7.21-7.27 (m, 1H, aromatic), 7.34-7.37 (m, 1 H , aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 51.6,52.1$, $65.2,68.0,111.8,121.8,125.6,128.1,128.7,130.3,140.9$, 154.9, 166.6, 169.5; Ms m/z 248 (8), 230 (54), 220 (41), 202 (41), 193 (63), 165 (40), 147 (100), 135 (66); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{6}$: C, 59.99; H, 5.75. Found: C, 59.73; H, 5.58.
Methyl 3-[2-(Carbomethoxymethyloxy)-5-methyl]-phenyl-3-hydroxy-2-methylenepropanoate (3b): Reaction time: 12 d; yield: 44%; white solid; $\mathrm{mp} 49-50^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 3483, 1760, 1741, 1721, 1631, 1499, $1438 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.72(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OH}), 4.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.93(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.98$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}), 6.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.13(\mathrm{~s}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.6,51.8,52.3$, $65.7,68.3,112.0,125.8,128.9,129.2,130.2,131.5,141.0$, 153.1, 166.8, 169.8; Ms m/z 294 (1, [M $\left.{ }^{+}\right]$), 262 (6), 244 (44), 234 (17), 216 (49), 207 (81), 205 (73), 179 (47), 161 (100), 149 (58). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6}$: C, $61.22 ; \mathrm{H}, 6.16$. Found: C, 61.08; H, 5.84.

Methyl 3-[2-(Carbomethoxymethyloxy)-5-methoxy]-phenyl-3-hydroxy-2-methylenepropanoate (3c): Reaction time: 6 d ; yield: 43%; colorless oil; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 3491 , $1760,1744,1721,1631,1497,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.13(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.65(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.94(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$,
$6.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 6.74-6.75 (m, 2H, aromatic), 6.91-6.92 (m, 1 H , aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 51.8,52.3$, $55.6,66.3,68.0,113.5,113.6,113.9,125.9,131.9,140.9$, 149.3, 154.6, 166.7, 170.0; Ms m/z 310 (21, [$\left.\left.\mathrm{M}^{+}\right]\right), 292$ (9), 278 (12), 260 (18), 250 (12), 233 (12), 221 (47), 219 (38), 205 (23), 195 (25), 187 (27), 177 (100); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{7}$: C, 58.06; H, 5.85. Found: C, 58.31; H, 5.92.

Methyl 3-[(2-Carbomethoxymethyloxy)-3-ethoxy]-phenyl-3-hydroxy-2-methylenepropanoate (3d): Reaction time: 8 d ; yield: 42%; white solid; mp $62-63{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): $3476,1763,1743,1723,1632,1473,1438 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $4.24(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.74$ and $4.90\left(\mathrm{AB}\right.$ quartet, $\left.J=16.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 6.06 (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.82-6.91$ (m, 2 H , aromatic), 6.98-7.03 (m, 1 H , aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.8,51.8,52.1,64.2,67.5,69.0,112.9$, 119.7, 124.1, 125.3, 134.9, 141.5, 144.9, 150.6, 166.6, 171.2; Ms $m / z 306$ (2), 292 (5), 281 (5), 278 (9), 274 (15), 262 (10), 235 (100), 191 (76), 179 (17); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{7}$: C, 59.25; H, 6.22. Found: C, 58.93; H, 6.08.

Methyl 3-[5-Bromo-2-(carbomethoxymethyloxy)]phen-yl-3-hydroxy-2-methylenepropanoate (3e): Reaction time: 6 h ; yield: 49%; white solid; mp 71-72 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 3480, 1759, 1742, 1720, 1630, 1484, $1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.74$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.79 (s, 3 H , $\left.\mathrm{OCH}_{3}\right), 3.98(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.92$ (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $6.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.34(\mathrm{dd}, J=8.5$ and 2.6 $\mathrm{Hz}, 1 \mathrm{H}$, aromatic), 7.49 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.0,52.5,65.6,67.6,113.7$, 114.7, 126.6, 131.1, 131.6, 132.9, 140.2, 154.1, 166.6, 169.3; Ms m/z 343 (5), 341 (4), 328 (9), 326 (8), 310 (31), 308 (31), 282 (31), 280 (30), 271 (51), 227 (100), 225 (74), 213 (42), 201 (27), 199 (26), 157 (13), 155 (12); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{6}$: C, $46.82 ; \mathrm{H}, 4.21$. Found: C, $46.65 ; \mathrm{H}, 4.32$.

Methyl 3-[2-(Carbomethoxymethyloxy)-5-chloro)]-phenyl-3-hydroxy-2-methylenepropanoate (3f): Reaction time: 8 h ; yield: 64%; yellow oil; $\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 3472,1756 , 1741, 1720, 1632, 1486, $1438 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 4.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.96(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 6.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.20 (dd, $J=8.8$ and $2.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.35 (d, $J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 51.9$, $52.4,65.7,67.6,113.3,126.5,127.2,128.3,128.6,132.5$, $140.3,153.6,166.6,169.3$; Ms $m / z 316$ (1), 314 (2, $\left.\left[\mathrm{M}^{+}\right]\right)$, 264 (17), 254 (22), 236 (12), 225 (33), 209 (17), 199 (26), 195 (21), 183 (33), 181 (100), 171 (29), 169 (82), 167 (22), 165 (40), 157 (20), 155 (58); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClO}_{6}$: C, 53.43; H, 4.80. Found: C, 53.19; H, 4.95.

Methyl 3-[2-(Carbomethoxymethyloxy)-3,5-dichloro)]-phenyl-3-hydroxy-2-methylenepropanoate (3g): Reaction time: 13 h; yield: 72%; yellow oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 3478,1769 , 1712, 1631, 1459, $1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01(\mathrm{~d}, J=5.3$
$\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.76$ and $4.83(\mathrm{AB}$ quartet, $J=16.1 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $6.08(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.44$ (s, 1H, CH), 7.21 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.30 (d, $J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 51.9$, 52.3, 66.4, 69.5, 126.3, 126.7, 127.3, 129.7, 130.1, 138.4, 140.5, 150.7, 166.1, 169.9; Ms $m / z 318$ (9), 316 (14), 300 (15), 298 (24), 273 (10), 272 (16), 271 (12), 270 (20), 262 (14), 261 (46), 260 (22), 259 (66), 217 (50), 215 (100), 203 (31), 199 (31), 189 (43), 188 (26); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{6}$: C, 48.16; H, 4.04. Found: C, $47.89 ; \mathrm{H}, 3.82$.
Morita-Baylis-Hillman Acetates 4; General Procedure. $\mathrm{Ac}_{2} \mathrm{O}(1.53 \mathrm{~g}, 15 \mathrm{mmol})$ was added to a stirred solution of the MBH adduct $3(10 \mathrm{mmol})$ and $\operatorname{DMAP}(0.34 \mathrm{~g}, 3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at rt After stirring at the same temperature for $30 \mathrm{~min}-1 \mathrm{~h}$, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated in vacuo. The mixture was chromatographed on silica gel eluting with hexane-EtOAc (2:1) to produce 4 . The physical and spectral data of 4 prepared by this general method are listed as follows.
Methyl 3-Acetoxy-3-[2-(carbomethoxymethyloxy)]-phenyl-2-methylenepropanoate (4a): Reaction time: 1 h ; yield: 90%; colorless oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $1743,1729,1635$, 1493, 1438, $1232 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.11$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.67$ (s, 2H, CH2), $5.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.77(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $6.97-7.02(\mathrm{~m}, 1 \mathrm{H}$, aromatic), 7.10 (s, $1 \mathrm{H}, \mathrm{CH}), 7.24-7.32\left(\mathrm{~m}, 2 \mathrm{H}\right.$, aromatic); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 21.0,52.0,52.1,65.6,68.1,111.8,121.6,126.8$, $127.5,128.1,129.5,138.7,155.2,165.7,169.1,169.4$; Ms $m / z 304$ (5), 279 (50), 248 (23), 247 (100), 231 (19), 220 (10), 219 (16), 215 (10), 194 (17), 187 (26), 165 (21); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{7}$: C, 59.62; H, 5.63. Found: C, 59.39; H, 5.48 .

Methyl 3-Acetoxy-3-[2-(carbomethoxymethyloxy)-5-methyl]phenyl-2-methylenepropanoate (4b): Reaction time: 1 h ; yield: 93%; white solid; mp 53-54 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1743, 1726, 1635, 1501, 1437, $1231 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.28(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.65(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $5.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.67(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}$, aromatic), 7.04-7.07 (m, 2H, aromatic), 7.07 (s, 1H, $\mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.6,21.0,51.9,52.1$, $65.9,68.1,112.0,126.4,127.2,128.6,129.9,131.0,138.8$, 153.2, 165.7, 169.3, 169.4; Ms $m / z 336\left(2,\left[\mathrm{M}^{+}\right]\right), 293$ (56), 277 (11), 262 (29), 261 (100), 245 (20), 207 (25), 201 (56), 179 (25); Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{7}: \mathrm{C}, 60.71 ; \mathrm{H}, 5.99$. Found: C, 60.49; H, 5.70.

Methyl 3-Acetoxy-3-[2-(carbomethoxymethyloxy)-5-methoxylphenyl-2-methylenepropanoate (4c): Reaction time: 1 h ; yield: 92%; colorless oil; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 1743 , 1726, 1634, 1499, 1436, $1229 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.71(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}), 6.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.76-6.78(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 6.86-6.87 (m, 1H, aromatic), $7.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (75
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.0,52.0,52.1,55.6,66.7,68.0,113.5$, $113.7,114.3,127.6,128.3,138.6,149.5,154.4,165.6,169.3$, 169.4; Ms $m / z 352$ (40, [M $\left.{ }^{+}\right]$), 309 (20), 278 (39), 277 (100), 261 (29), 249 (28), 233 (41), 223 (68), 219 (40), 205 (44), 195 (51), 177 (54), 161 (89); Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{8}$: C, 57.95 ; H, 5.72. Found: C, 57.76; H, 5.59.

Methyl 3-Acetoxy-3-[2-(carbomethoxymethyloxy)-3-ethoxy]phenyl-2-methylenepropanoate (4d): Reaction time: 1 h ; yield: 92%; white solid; mp $75-76{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1743, 1726, 1635, 1473, 1438, $1227 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.41\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 2.09 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.81 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $4.04\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.68$ and $4.74(\mathrm{AB}$ quartet, $\left.15.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.85-$ $6.88(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 7.00-7.06 (m, 1 H , aromatic), $7.12(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.7,21.0,51.9$, $52.0,64.2,68.3,69.7,113.2,119.5,124.2,127.1,131.2$, 139.0, 145.4, 151.1, 165.5, 169.4, 170.0; Ms m/z 366 (7, $\left.\left[\mathrm{M}^{+}\right]\right), 323$ (12), 292 (36), 291 (100), 231 (35), 191 (20); Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{8}$: C, 59.01; H, 6.05. Found: C, 58.78; H, 6.26.

Methyl 3-Acetoxy-3-[5-bromo-2-(carbomethoxymeth-yloxy)]phenyl-2-methylenepropanoate (4e): Reaction time: 30 min ; yield: 97%; white solid; mp $64-65^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1745, 1726, 1635, 1487, 1437, $1220 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.78 (s, 3H, OCH_{3}), 4.66 (s, 2H, CH2), 5.74 (s, 1H, CH), $6.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.04 (s, $1 \mathrm{H}, \mathrm{CH}), 7.35-7.40\left(\mathrm{~m}, 2 \mathrm{H}\right.$, aromatic); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 21.0,52.0,52.2,65.7,67.4,113.6,114.1,127.9$, 129.1, 130.9, 132.2, 138.1, 154.2, 165.4, 168.6, 169.3; Ms $m / z 402$ (1), 400 (1, [$\left.\mathrm{M}^{+}\right]$), 384 (9), 382 (9), 359 (43), 357 (43), 327 (100), 326 (87); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrO}_{7}$: C, 47.90; H, 4.27. Found: C, 47.72; H, 4.15.

Methyl 3-Acetoxy-3-[2-(carbomethoxymethyloxy)-5-chloro]phenyl-2-methylenepropanoate (4f): Reaction time: 1 h ; yield: 95%; white solid; mp $68-70{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1745, 1727, 1634, 1488, 1438, $1220 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.74(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 6.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.04 (s, 1H, CH), 7.22 (dd, $J=8.8$ and $2.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.27 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 21.0,52.0,52.2,65.8,67.6,113.2,126.8,127.9$, 128.1, 128.8, 129.2, 138.2, 153.8, 165.4, 168.7, 169.3; Ms $m / z 358$ (2), 356 (6, [$\left.\mathrm{M}^{+}\right]$), 315 (19), 313 (53), 283 (38), 281 (100), 267 (10), 265 (20), 255 (8), 253 (20), 227 (71); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{7}$: C, 53.87; H, 4.80. Found: C, 53.59; H, 4.62.

Methyl 3-Acetoxy-3-[2-(carbomethoxymethyloxy)-3,5-dichloro]phenyl-2-methylenepropanoate ($\mathbf{4 g}$): Reaction time: 30 min ; yield: 96%; white solid; $\mathrm{mp} 71-72{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$ PE); IR (KBr): 1748, 1727, 1635, 1460, 1436, $1216 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.11$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.74 ($\mathrm{s}, 3 \mathrm{H}$, OCH_{3}), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $4.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.78(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 6.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.19(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, 1 H , aromatic), $7.36\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromatic); ${ }^{13} \mathrm{C}$ NMR
($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.9,52.1,52.2,67.7,69.7,127.0$, 127.6, 128.5, 130.2, 130.4, 134.5, 138.0, 151.0, 165.0, 168.6, 169.2; Ms m/z 392 (2), 390 (3, [M $\left.{ }^{+}\right]$), 349 (34), 347 (49), 317 (71), 315 (100), 287 (42), 263 (19), 261 (44), 259 (49), 245 (28), 243 (45), 235 (35), 233 (54), 201 (50), 199 (69); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{7}$: C, 49.12; H, 4.12. Found: C, 48.95; H, 4.39.
Dimethyl 2,3-Dihydrobenzo[b]oxepine-2,4-dicarboxylates 5; General Procedure. A mixture of MBH acetate 4 (1 $\mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.72 \mathrm{~g}, 2.2 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was stirred at reflux temperature for $22-96 \mathrm{~h}$. After cooling to rt , the precipitate was filtered, and washed with THF (20 mL). The organic phases were concentrated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (4:1) to give 5 as a solid. The physical and spectral data of $\mathbf{5}$ prepared by this general method are listed as follows.
Dimethyl 2,3-Dihydrobenzo[b]oxepine-2,4-dicarboxylate (5a): Reaction time: 26 h ; yield: 50%; white solid; mp $66-67{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1757, 1708, 1635, 1487, $1436,1261 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.08$ (ddd, $J=18.5,9.7$, and $\left.2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.34(\mathrm{dd}, J=18.5$ and $\left.1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.59(\mathrm{dd}, J=9.7$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.05-7.13(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.27-7.34(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.63(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}$) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.2,52.3,52.6$, 77.1, 120.6, 123.2, 123.5, 128.1, 131.1, 134.9, 138.1, 158.2, 167.6, 170.4; Ms $m / z 262$ ($8,\left[\mathrm{M}^{+}\right]$), 230 (34), 203 (36), 173 (42), 171 (100), 143 (14), 115 (26); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{5}$: C, 64.12; H, 5.38. Found: C, 64.01; H, 5.20.
Dimethyl 7-Methyl-2,3-dihydrobenzo[b]oxepine-2,4dicarboxylate (5b): Reaction time: 24 h ; yield: 58\%; white solid; mp 89-91 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1758, 1707, 1633, 1496, 1436, 1263, $1220 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.06(\mathrm{ddd}, J=18.5,9.7$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 3.32 (dd, $J=18.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.82(\mathrm{~s}, 6 \mathrm{H}, 2$ $\left.\times \mathrm{OCH}_{3}\right), 4.55(\mathrm{dd}, J=9.7$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.83-7.11$ (m, 3 H , aromatic), $7.59(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.3,35.2,52.3,52.5,77.1,120.4$, $123.2,128.0,131.8,132.5,135.1,138.2,156.1,167.6$, 170.5; Ms m/z 276 (8, [M $\left.\left.{ }^{+}\right]\right), 244$ (14), 217 (15), 185 (100), 157 (12), 129 (12); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}: \mathrm{C}, 65.21$; H , 5.84. Found: C, 65.07; H, 5.72.

Dimethyl 7-Methoxy-2,3-dihydrobenzo[b]oxepine-2,4dicarboxylate (5c): Reaction time: 23 h ; yield: 54\%; white solid; mp 96-97 ${ }^{\circ} \mathrm{C}$ ($\left.\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1758, 1708, 1634, $1498,1436,1258,1240 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.05$ (ddd, $J=18.5,10.0$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.31(\mathrm{dd}, J$ $=18.5$ and $\left.1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.53(\mathrm{dd}, J=10.0$ and 1.8 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.80-6.87(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.05(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}$, aromatic), $7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.2,52.3,52.5,55.7,77.5,117.2$, 118.1, 121.6, 124.3, 128.7, 137.8, 152.3, 155.1, 167.6, 170.5; Ms m/z 292 (42, [M $\left.\left.{ }^{+}\right]\right), 260$ (6), 233 (25), 219 (18), 201 (100), 174 (36); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{6}$: C, 61.64; H, 5.52. Found: C, 61.35; H, 5.39.

Dimethyl 9-Ethoxy-2,3-dihydrobenzo[b]oxepine-2,4dicarboxylate (5d): Reaction time: 96 h ; yield: 20\%; white solid; mp 103-106 ${ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}$); IR (KBr): 1736, 1708, 1635, 1463, 1436, 1255, $1205 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 1.46\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 3.15 (ddd, $J=18.8$, 9.7 and $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.35(\mathrm{dd}, J=18.8$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), $3.83\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 4.10\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.63(\mathrm{dd}, J=9.7$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.90-7.02(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $7.61(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): $\delta 14.9,35.2,52.3,52.6,65.3,77.7,115.8,122.9$, $124.7,126.6,128.4,138.1,148.5,150.1,167.6,170.2$; Ms $\mathrm{m} / \mathrm{z} 307$ (10), 306 (54, [$\left.\mathrm{M}^{+}\right]$), 247 (56), 246 (42), 217 (38), 215 (80), 205 (14), 203 (22), 201 (54), 189 (29), 188 (22), 187 (100); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{6}$: C, 62.74; H, 5.92. Found: C, 62.57; H, 5.76.

Dimethyl 7-Bromo-2,3-dihydrobenzo[b]oxepine-2,4dicarboxylate (5e): Reaction time: 24 h ; yield: 43\%; white solid; mp 110-111 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1759, 1709, 1637, 1479, 1436, 1259, $1192 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 3.10$ (ddd, $J=18.5,9.4$, and $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.32\left(\mathrm{dd}, J=18.5\right.$ and $\left.1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.58(\mathrm{dd}, J=9.4$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 7.01 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.37 (dd, $J=8.8$ and 2.6 $\mathrm{Hz}, 1 \mathrm{H}$, aromatic), 7.45 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.52 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.0$, 52.4, 52.7, 77.1, 115.4, 122.5, 125.4, 129.7, 133.6, 136.5, 136.7, 157.1, 167.1, 170.0; Ms m/z 342 (20), 340 (20, [$\left.\mathrm{M}^{+}\right]$), 310 (37), 308 (37), 283 (24), 281 (15), 253 (55), 251 (100), 250 (54), 249 (72), 224 (17), 222 (18); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{5}$: C, 49.29; H, 3.84. Found: C, 49.37; H, 3.95.

Dimethyl 7-Chloro-2,3-dihydrobenzo[b]oxepine-2,4dicarboxylate (5f): Reaction time: 22 h ; yield: 53\%; white solid; mp 104-106 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1757, 1711, 1637, 1482, 1436, 1258, 1225, $1196 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.09$ (ddd, $J=18.5,9.7$, and $2.1 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), $3.32\left(\mathrm{dd}, J=18.5\right.$ and $\left.1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.58(\mathrm{dd}, J=9.7$ and 2.1 Hz , $1 \mathrm{H}, \mathrm{CH}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.23(\mathrm{dd}, J=$ 8.8 and $2.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.30(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.52(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 35.0,52.4,52.6,77.2,122.1,124.9,128.1,129.7$, 130.7, 133.7, 136.6, 156.6, 167.2, 170.0; Ms m/z 298 (5), 296 (14, [M+]), 266 (2), 264 (6), 239 (8), 237 (25), 207 (33), 205 (100), 180 (7), 178 (19), 149 (18), 115 (37); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClO}_{5}$: C, 56.67; H, 4.42. Found: C, 56.42; $\mathrm{H}, 4.27$.

Methyl 2-[(2-Carbomethoxybenzo[b]furan)-3-yl]propanoates 9; General Procedure. A mixture of MBH acetate $4(1 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.72 \mathrm{~g}, 2.2 \mathrm{mmol})$ in DMF $\left(5 \mathrm{~mL}\right.$) was stirred at $67-70^{\circ} \mathrm{C}$ for $1-48 \mathrm{~h}$. After cooling to rt , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent was evaporated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (4:1) to give 9 as a solid. The physical and spectral data of 9 prepared by this general method are listed as follows.

Methyl 2-[(2-Carbomethoxybenzo[b]furan)-3-yl]pro-
panoate (9a): Reaction time: 3 h ; yield: 31%; white solid; $\mathrm{mp} 41-43{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1737, 1718, 1595, 1436, $1303 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.62(\mathrm{~d}, J=7.3$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.92$ (q, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.27-7.32(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $7.43-$ $7.49(\mathrm{~m}, 1 \mathrm{H}$, aromatic), 7.57 (dd, $J=7.6$ and $0.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.69 (dd, $J=7.9$ and $0.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.8,35.7,52.2,52.3,112.4$, $122.0,123.5,126.4,127.9,128.4,140.2,154.5,160.4$, 173.5; Ms m/z 262 (5, [M $\left.{ }^{+}\right]$), 230 (100), 204 (38), 202 (34), 187 (14), 172 (34), 171 (70); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{5}$: C, 64.12; H, 5.38. Found: C, 63.81; H, 5.12.

Methyl 2-[(2-Carbomethoxy-5-methylbenzo[b]furan)-3-yl]propanoate (9b): Reaction time: 1 h ; yield: 25\%; white solid; mp 106-108 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1737, 1716, 1587, 1436, $1304 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.61$ (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.67(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.89(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 7.25-7.28 (m, 1 H , aromatic), 7.43-7.46 (m, 2 H , aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.8,21.4,35.6,52.2,52.3$, $111.9,121.4,126.5,128.2,129.5,133.2,140.3,153.0,160.5$, 173.6; Ms $m / z 276$ (8, [M $\left.\left.{ }^{+}\right]\right), 245$ (14), 244 (93), 218 (42), 216 (50), 201 (19), 187 (42), 185 (100); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}$: C, 65.21; H, 5.84. Found: C, 64.98; H, 5.96.
Methyl 2-[(2-Carbomethoxy-5-methoxybenzo [b]-furan)-3-yllpropanoate (9c): Reaction time: 10 h ; yield: 21\%; white solid; $\mathrm{mp} 83-84{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1736, 1716, $1584,1480,1435,1237 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.61\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.89(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 7.05-7.09 (m, 2H, aromatic), 7.44-7.47 (m, 2 H , aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.6,35.6,52.1,52.2,55.8$, $102.9,113.0,117.8,126.8,128.2,140.9,149.6,156.2,160.3$, 173.5; Ms m/z 292 (25, [M $\left.{ }^{+}\right]$), 260 (39), 233 (25), 232 (27), 217 (14), 201 (100); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{6}$: C, 61.64; H, 5.52. Found: C, 61.43; H, 5.36.

Methyl 2-[(2-Carbomethoxy-7-ethoxybenzo[b]furan)-3-yllpropanoate (9d): Reaction time: 48 h ; yield: 11\%; colorless oil; IR (KBr): 1737, 1718, 1589, 1438, $1316 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.51(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.60\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.27\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.90(\mathrm{q}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.90-6.93(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $7.15-7.24$ (m, 2H, aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.7$, 16.7, 35.7, 52.1, 52.2, 64.5, 110.0, 113.4, 124.2, 128.1, 128.7, 140.4, 144.4, 145.3, 160.4, 173.6; Ms m/z 306 (49, $\left[\mathrm{M}^{+}\right]$), 274 (100), 248 (48), 246 (58), 218 (70), 215 (66), 187 (67); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{6}$: C, 62.74; H, 5.92. Found: C, 62.57; H, 5.79.

Methyl 2-[(5-Bromo-2-carbomethoxybenzo[b]furan)-3-yllpropanoate (9e): Reaction time: 2 h ; yield: 21\%; yellow solid; mp 141-142 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}\right)$; IR (KBr): 1736, $1718,1595,1435,1301 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.61\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.87(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.44(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}$, aromatic), $7.55(\mathrm{dd}, J=8.8$ and $2.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.84\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromatic); ${ }^{13} \mathrm{C}$ NMR (75
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.9,35.6,52.4,52.5,113.9,116.7,124.7$, 127.6, 128.3, 131.0, 141.3, 153.2, 160.0, 173.2; Ms $m / z 342$ (4), $340\left(4,\left[\mathrm{M}^{+}\right]\right), 310(92), 308$ (91), 282 (29), 280 (28), 251 (100), 249 (74); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{5}$: C, 49.29; H, 3.84. Found: C, 49.12; H, 3.70.

Methyl 2-[(2-Carbomethoxy-5-chlorobenzo[b]furan)-3-yl]propanoate (9f): Reaction time: 5 h ; yield: 23\%; white solid; mp 123-125 ${ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}$); IR (KBr): 1737, 1720, 1595, 1435, $1302 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.61$ $\left(\mathrm{d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.88(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 1 H , aromatic), $7.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.68(\mathrm{~s}$, 1 H , aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.9,35.6$, 52.3, 52.4, 113.5, 121.6, 127.7, 128.3 (2 peaks), 129.3, 141.5, 152.8, 160.1, 173.2; Ms $m / z 298$ (4), 296 (12, $\left[\mathrm{M}^{+}\right]$), 266 (15), 264 (46), 237 (28), 236 (18), 205 (100), 149 (17), 115 (26); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClO}_{5}$: C, 56.67 ; H, 4.42. Found: C, 56.49; H, 4.28 .

Methyl 2-[(2-Carbomethoxy-5,7-dichlorobenzo[b]-furan)-3-yl]propanoate (9g).

Method A: A mixture of $\mathbf{4 g}(0.39 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(0.72 \mathrm{~g}, 2.2 \mathrm{mmol})$ in THF (5 mL) was stirred at reflux temperature for 19 h . After cooling to rt , the precipitate was filtered, and washed with THF (20 mL). The organic phases were concentrated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (4:1) to give $\mathbf{9 g}(70 \mathrm{mg}, 21 \%)$ as a white solid, which was recrystallized from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE}$; mp 147-149 ${ }^{\circ} \mathrm{C}$; IR (KBr): 1740, 1711, 1597, 1435, $1308 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.60\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $3.69(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.89(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 7.47(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.59(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, 1 H , aromatic); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.8,35.7$, $52.5,52.6,118.6,120.3,127.9,128.2,128.7,129.5,142.3$, 149.0, 159.8, 173.0; Ms m/z 332 (2), 330 (4, [M $\left.{ }^{+}\right]$), 300 (53), 298 (81), 273 (21), 272 (33), 271 (35), 270 (38), 243 (23), 242 (19), 241 (100), 240 (25), 239 (84); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{5}$: C, 50.78; H, 3.65. Found: C, $50.62 ; \mathrm{H}, 3.57$.

Method B: A mixture of MBH acetate $\mathbf{4 g}(0.39 \mathrm{~g}, 1$ $\mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.72 \mathrm{~g}, 2.2 \mathrm{mmol})$ in DMF $(5 \mathrm{~mL})$ was stirred at $67-70{ }^{\circ} \mathrm{C}$ for 3 h . After cooling to rt , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times$ $20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent was evaporated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (4:1) to give $9 \mathbf{g}(79 \mathrm{mg}, \mathbf{2 4 \%}$) as a solid. The physical and spectral data of 9 g was the same as described above.
(E)-Methyl 2-Acetoxymethyl-3-[2-(carbomethoxymethyloxy)phenyl]propenoate (6a): A mixture of $\mathbf{4 a}$ (0.32 $\mathrm{g}, 1 \mathrm{mmol})$ and DABCO ($0.12 \mathrm{~g}, 1.1 \mathrm{mmol}$) in THF (5 mL) was stirred at reflux temperature for 24 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent was evaporated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (3:1) to give $\mathbf{6 a}(0.20 \mathrm{~g}, 63 \%)$ as a yellow oil;

IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1759,1739,1717,1634,1487,1436,1225$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.80$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.91$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 6.77-6.79 ($\mathrm{m}, 1 \mathrm{H}$, aromatic), 7.01-7.04 (m, 1H, aromatic), 7.26-7.36 ($\mathrm{m}, 2 \mathrm{H}$, aromatic), $8.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.0,52.2,52.3,59.8,65.5$, 111.6, 121.7, 124.0, 127.0, 130.3, 131.0, 141.1, 156.0, 167.2, 169.0, 170.7; Ms m/z 322 (1, [M $\left.{ }^{+}\right]$), 290 (19), 279 (16), 248 (63), 247 (100), 231 (19), 219 (28), 189 (82), 175 (55); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{7}$: C, 59.62 ; H, 5.63. Found: C, 59.45; H, 5.41 .

Synthesis of Benzo[b]furan 9a from 6a.

Method A: A mixture of $\mathbf{6 a}(0.32 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(0.72 \mathrm{~g}, 2.2 \mathrm{mmol})$ in THF (5 mL) was stirred at reflux temperature for 48 h . After cooling to rt , the precipitate was filtered, and washed with THF (20 mL). The organic phases were concentrated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (4:1) to give $\mathbf{9 a}(31 \mathrm{mg}, 12 \%)$ as a solid. The physical and spectral data of 9 a was the same as described in the preparation of $\mathbf{9 a}$ from MBH acetate $\mathbf{4 a}$.

Method B: A mixture of $\mathbf{6 a}(0.32 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(0.72 \mathrm{~g}, 2.2 \mathrm{mmol})$ in DMF (5 mL) was stirred at $67-70{ }^{\circ} \mathrm{C}$ for 3 h . After cooling to rt , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent was evaporated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane$\operatorname{EtOAc}(4: 1)$ to give $\mathbf{9 a}(16 \mathrm{mg}, 6 \%)$ as a solid. The physical and spectral data of $9 \mathbf{a}$ was the same as described in the preparation of $\mathbf{9 a}$ from MBH acetate $\mathbf{4 a}$.
(Z)-Methyl 2-Bromomethyl-3-[2-(carbomethoxymethyloxy)phenyl]propenoate (10): A mixture of NBS (0.98 g , $5.5 \mathrm{mmol})$ and DMS $(0.56 \mathrm{~mL}, 7.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ $\mathrm{mL})$ was added MBH adduct $3 \mathrm{a}(1.40 \mathrm{~g}, 5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 h at rt , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent was evaporated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (3:1) to afford $10(1.31 \mathrm{~g}, 76 \%)$ as a white solid, which was recrystallized from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE} ; \mathrm{mp} 69-72{ }^{\circ} \mathrm{C}$; IR (KBr): $1759,1715,1624,1599,1485,1278,1207 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.88(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.37 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 4.71 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.77-6.80 $(\mathrm{m}, 1 \mathrm{H}$, aromatic), $7.09-7.14(\mathrm{~m}, 1 \mathrm{H}$, aromatic), 7.34-7.39 $(\mathrm{m}, 1 \mathrm{H}$, aromatic), $7.70-7.78(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $8.08(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 27.3,52.3,52.4,65.5$, 111.7, 121.9, 124.0, 129.0, 129.8, 131.0, 138.5, 156.2, 166.6, 169.0; Ms m/z 344 (1), 342 (1, [M $\left.{ }^{+}\right]$), 313 (1), 311 (1), 263 (35), 231 (72), 203 (100), 173 (65), 143 (46), 131 (73), 115 (84); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{5}$: C, 49.00; H, 4.41. Found: C, 48.74; H, 4.36 .
Synthesis of Dihydrobenzo[b]oxepine 5a from 10: A mixture of MBH allyl bromide $10(0.34 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.72 \mathrm{~g}, 2.2 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was stirred at reflux temperature for 29 h . After cooling to rt , the preci-
pitate was filtered, and washed with THF (20 mL). The organic phases were concentrated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (4:1) to give $\mathbf{5 a}(60 \mathrm{mg}, \mathbf{2 3 \%}$) as a solid. The physical and spectral data of $\mathbf{5 a}$ was the same as described in the preparation of $\mathbf{5 a}$ from MBH acetate $\mathbf{4 a}$.

Methyl (2-Formylthiophenoxy)acetate (16): To a suspension of PCC $(1.62 \mathrm{~g}, 7.5 \mathrm{mmol})$ and celite $(2.00 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise a solution of alcohol $15(1.06 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt After stirring for 2 h , the precipitate was filtered, and washed with THF $(20 \mathrm{~mL})$. The organic phases were concentrated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (3:1) to give $\mathbf{1 6}$ $(0.89 \mathrm{~g}, 85 \%)$ as a white solid, which was recrystallized from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE} ; \mathrm{mp} 56-5{ }^{\circ} \mathrm{C}$; IR (KBr): 2864, 2743, 1736, 1692, 1676, 1588, 1560, 1462, $1435 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 7.35-7.41 (m, 1 H , aromatic), 7.48-7.59 ($\mathrm{m}, 2 \mathrm{H}$, aromatic), 7.85-7.88 (m, 1H, aromatic), $10.4(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.5,52.7,126.3,128.7,132.7,134.1$, 134.2, 139.7, 169.6, 191.6; Ms m/z 210 (100, $\left.\left[\mathrm{M}^{+}\right]\right), 192$ (60), 178 (64), 161 (75), 150 (73), 137 (51); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 57.13 ; \mathrm{H}, 4.79$. Found: C, 57.08; H, 4.65.

Methyl Benzo[b]thiophene-2-carboxylate (17): A mixture of $\mathbf{1 6}(0.63 \mathrm{~g}, 3 \mathrm{mmol})$, methyl acrylate $(0.81 \mathrm{~mL}, 9$ $\mathrm{mmol})$, $\mathrm{DABCO}(0.34 \mathrm{~g}, 3 \mathrm{mmol})$, and triethanolamine $(0.36 \mathrm{~g}, 2.4 \mathrm{mmol})$ was stirred at rt for 6 d . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated under reduced pressure. The resulting mixture was chromatographed on silica gel eluting with hexane-EtOAc (3:1) to produce $\mathbf{1 7}$ $(0.50 \mathrm{~g}, 87 \%)$ as a white solid, which was recrystallized from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{PE} ; \mathrm{mp} 69-71{ }^{\circ} \mathrm{C}\left(\mathrm{Lit}^{27} \mathrm{mp} 72-73{ }^{\circ} \mathrm{C}\right)$; $\mathrm{IR}(\mathrm{KBr})$: 1725, 1521, 1290, $1248 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.38-7.48(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 7.857.89 (m, 2H, aromatic), $8.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.5,122.7,124.9,125.5,126.9,130.6$, 133.3, 138.6, 142.2, 163.2; Ms $m / z 192$ (98, $\left.\left[\mathrm{M}^{+}\right]\right), 161$ (100), 133 (21), 89 (24).

References and Notes

1. For reviews, see: (a) Hoberg, J. O. Tetrahedron 1998, 54, 12631. (b) Snyder, N. L.; Haines, H. M.; Peczuh, M. W. Tetrahedron 2006, 62, 9301.
2. (a) Basavaiah, D.; Sharada, D. S.; Veerendhar, A. Tetrahedron Lett. 2004, 45, 3081. (b) Das, B.; Majhi, A.; Banerjee, J.; Chowdhury, N.; Holla, H.; Harakishore, K.; Murty, U. S. Chem. Pharm. Bull. 2006, 54, 403.
3. For some examples, see: (a) Macias, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G. Tetrahedron Lett. 1999, 40, 4725. (b) Wijnberg, J. B. P. A.; van Veldhuizen, A.; Swarts, H. J.; Frankland, J. C.; Field, J. A. Tetrahedron Lett. 1999, 40, 5767. (c) Asakawa, Y.; Hashimoto, T.; Takikawa, K.; Tori, M.; Ogawa, S. Phytochemistry 1991, 30, 235. (d) Asakawa, Y.; Takeda, R.; Toyota, M.; Takemoto, T. Phytochemistry 1981, 20, 858.
4. For recent example, see: (a) Baba, M.; Nishimura, O.; Kanzaki,
N.; Okamoto, M.; Sawada, H.; Iizawa, Y.; Shiraishi, M.; Aramaki, Y.; Okonogi, K.; Ogawa, Y.; Meguro, K.; Fujino, M. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 5698. (b) Shiraishi, M.; Aramaki, Y.; Seto, M.; Imoto, H.; Nishikawa, Y.; Kanzaki, N.; Okamoto, M.; Sawada, H.; Nishimura, O.; Baba, M.; Fujino, M. J. Med. Chem. 2000, 43, 2049. (c) Imamura, S.; Ishihara, Y.; Hattori, T.; Kurasawa, O.; Matsushita, Y.; Sugihara, Y.; Kanzaki, N.; Iizawa, Y.; Baba, M.; Hashiguchi, S. Chem. Pharm. Bull. 2004, 52, 63. (d) Aramaki, Y.; Seto, M.; Okawa, T.; Oda, T.; Kanzaki, N.; Shiraishi, M. Chem. Pharm. Bull. 2004, 52, 254. (e) Seto, M.; Aramaki, Y.; Imoto, H.; Aikawa, K.; Oda, T.; Kanzaki, N.; Iizawa, Y.; Baba, M.; Shiraishi, M. Chem. Pharm. Bull. 2004, 52, 818. (f) Seto, M.; Aramaki, Y.; Okawa, T.; Miyamoto, N.; Aikawa, K.; Kanzaki, N.; Niwa, S.; Iizawa, Y.; Baba, M.; Shiraishi, M. Chem. Pharm. Bull. 2004, 52, 577. (g) Seto, M.; Miyamoto, N.; Aikawa, K.; Aramaki, Y.; Kanzaki, N.; Iizawa, Y.; Baba, M.; Shiraishi, M. Bioorg. Med. Chem. 2005, 13, 363.
5. Sabui, S. K.; Venkateswaran, R. V. Tetrahedron Lett. 2004, 45, 2047.
6. Fujiwara, T.; Koto, Y.; Takeda, T. Tetrahedron 2000, 56, 4859.
7. Fuchs, P. L. J. Am. Chem. Soc. 1974, 96, 1607.
8. Kahnberg, P.; Lee, C. W.; Grubbs, R. H.; Sterner, O. Tetrahedron 2002, 58, 5203.
9. Nishiguchi, A.; Ikemoto, T.; Ito, T.; Miura, S.; Tomimatsu, K. Heterocycles 2007, 71, 445.
10. Liu, G.; Lu, X. Adv. Synth. Catal. 2007, 349, 2247.
11. Li, Y.; Jardine, K. J.; Tan, R.; Song, D.; Dong, V. M. Angew. Chem. Int. Ed. 2009, 48, 9690.
12. (a) Aboraia, A. S.; Yee, S. W.; Gomaa, M. S.; Shah, N.; Robotham, A. C.; Makowski, B.; Prosser, D.; Brancale, A.; Jones, G.; Simons, C. Bioorg. Med. Chem. 2010, 18, 4939. (b) Negoro, N.; Sasaki, S.; Mikami, S.; Ito, M.; Suzuki, M.; Tsujihata, Y.; Ito, R.; Harada, A.; Takeuchi, K.; Suzuki, N.; Miyazaki, J.; Santou, T.; Odani, T.; Kanzaki, N.; Funami, M.; Tanaka, T.; Kogame, A.; Matsunaga, S.; Yasuma, T.; Momose, Y. ACS Med. Chem. Lett. 2010, 1, 290. (c) Li, J.; Rush, T. S., III.; Li, W.; DeVincentis, D.; Du, X.; Hu, Y.; Thomason, J. R.; Xiang, J. S.; Skotnicki, J. S.; Tam, S.; Cunningham, K. M.; Chockalingam, P. S.; Morris, E. A.; Levin, J. I. Bioorg. Med. Chem. Lett. 2005, 15, 4961.
13. Davis, M. C.; Groshens, T. J.; Parrish, D. A. Synth. Commun. 2010, 40, 3008.
14. (a) Suzuki, T.; Horaguchi, T.; Shimizu, T.; Abe, T. Bull. Chem. Soc. Jpn. 1993, 56, 2762, (b) Teague, S. J.; Barber, S. Tetrahedron Lett. 2010, 51, 4720.
15. Fall, Y.; Santana, L.; Teijeira, M.; Uriarte, E. Heterocycles 1995, 41, 647.
16. For reviews of the Morita-Baylis-Hillman reaction, see: (a) Drews, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653. (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001. (c) Ciganek, E. Org. React. 1997, 51, 201. (d) Langer, P. Angew. Chem. Int. Ed. 2000, 39, 3049. (e) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627. (f) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811. (g) Kataoka, T.; Kinoshita, H. Eur. J. Org. Chem. 2005, 45. (h) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481. (i) Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev.

2007, 36, 1581. (j) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511. (k) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1. (l) Ma, G.-N.; Jiang, J.-J.; Shi, M.; Wei, Y. Chem. Commun. 2009, 5496. (m) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447. (n) Zhong, W.; Liu, Y.; Wang, G.; Hong, L.; Chen, Y.; Chen, X.; Zheng, Y.; Zhang, W.; Ma, W.; Shen, Y.; Yao, Y. Org. Prep. Proced. Int. 2011, 43, 1.
17. (a) Kaye, P. T.; Musa, M. A.; Nocanda, X. W. Synthesis 2003, 531. (b) Kaye, P. T.; Musa, M. A. Synth. Commun. 2003, 33, 1755.
18. (a) Lee, K. Y.; Kim, J. M.; Kim, J. N. Bull. Korean Chem. Soc. 2003, 24, 17. (b) Lesch, B.; Brase, S. Angew. Chem. Int. Ed. 2004, 43, 115.
19. Ahn, S.-H.; Lim, H. N.; Lee, K.-J. J. Heterocycl. Chem. 2008, 45, 1701.
20. For our recent examples, see: (a) Hong, W. P.; Lim, H. N.; Park, H. W.; Lee, K.-J. Bull. Korean Chem. Soc. 2005, 26, 655. (b) Hong, W. P.; Lee, K.-J. Synthesis 2005, 33. (c) Hong, W. P.; Lee, K.-J. Synthesis 2006, 963. (d) Song, Y. S.; Lee, K.-J. J. Heterocycl. Chem. 2006, 43, 1721. (e) Ji, S.-H.; Hong, W. P.; Ko, S. H.; Lee, K.-J. J. Heterocycl. Chem. 2006, 43, 799. (f) Lim, H. N.; Ji, S.-H.; Lee, K.-J. Synthesis 2007, 2454. (g) Song, Y. S.; Lee, K.-J. Synthesis 2007, 3037. (h) Lim, H. N.; Song, Y. S.; Lee, K.-J. Synthesis 2007, 3376. (i) Jeon, K. J.; Lee, K.-J. J. Heterocycl. Chem. 2008, 45, 615. (j) Park, S. P.; Song, Y. S.; Lee, K.-J. Tetrahedron 2009, 65, 4703. (k) Han, E.-G.; Kim, H. J.; Lee, K.-J. Tetrahedron 2009, 65, 9616. (l) Park, S. P.; Ahn, S.-H.; Lee, K.-J. Tetrahedron 2010, 66, 3490. (m) Ahn, S.-H.; Jang, S. S.; Han, E.G.; Lee, K.-J. Synthesis 2011, 377.
21. (a) Clive, D. L. J.; Li, Z.; Yu, M. J. Org. Chem. 2007, 72, 5608. (b) Prabhudas, B.; Clive, D. L. J. Angew. Chem. Int. Ed. 2007, 46, 9295. (c) Wang, L.; Prabhudas, B.; Clive, D. L. J. J. Am. Chem. Soc. 2009, 131, 6003.
22. (a) Buckle, D. R.; Fenwick, A. E.; Outred, D. J.; Rockell, C. J. M. J. Chem. Research (S) 1987, 394. (b) Desai, N. C.; Dave, D.; Shah, M. D.; Vyas, G. D. Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem. 2000, 39B, 277; Chem. Abstr. 134, 100808.
23. Kim reported similar transformation, see: Lee, K. Y.; Kim, J. M.; Kim, J. N. Synlett 2003, 357.
24. Mason, P. H.; Emslie, N. D. Tetrahedron 1994, 50, 12001.
25. (a) Das, B.; Venkateswarlu, K.; Krishnaiah, M.; Holla, H.; Majhi, A. Helv. Chim. Acta 2006, 89, 1417. (b) Sá, M. M.; Fernandes, L.; Ferreira, M.; Bortoluzzi, A. J. Tetrahedron Lett. 2008, 49, 1228.
26. Karpenko, A. S.; Dorovskykh, I. V.; Shibinskaya, M. O.; Maltsev, G. V.; Lyakhova, H. A.; Gusyeva, Ju. O.; Zholobak, N. M.; Spivak, N. Ya.; Lyakhov, S. A.; Andronati, S. A. Ukrainica Bioorganica Acta 2008, 6, 65; Chem. Abstr. 151, 550047.
27. (a) Qian, W.; Bao, W.; Zhang, Y. Synlett 1997, 393. (b) Movassagh, B.; Shamsipoor, M. Synlett 2005, 121.
28. Hsiao, C.-N.; Bhagavatula, L.; Pariza, R. J. Synth. Commun. 1990, 20, 1678.
29. Beck, J. R. J. Org. Chem. 1972, 37, 3224.
30. Carreras, I.; Scherkenbeck, J.; Paulitz, C. Comb. Chem. High T. Scr. 2005, 8, 643.
31. Baettig, U.; Cox, B.; Janus, D.; Leblanc, C.; Sandham, D. A.; Turner, K. L.; Watson, S. J. PCT Int. Appl. WO 2006125593, 2006; Chem. Abstr. 2006, 146, 7693.

