DOI QR코드

DOI QR Code

Amperometric Determination of Nitrite at Poly(Methylene Blue)-Modified Glassy Carbon Electrode

  • Xu, Guang-Ri (Henan Institute of Science and Technology) ;
  • Xu, Guifang (Henan Institute of Science and Technology) ;
  • Xu, Ming-Lu (Henan Institute of Science and Technology) ;
  • Zhang, Zhengqing (Henan Institute of Science and Technology) ;
  • Tian, Yuan (School of Chemistry and Chemical Engineering, Henan University of Technology) ;
  • Choi, Han-Nim (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Lee, Won-Yong (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University)
  • Received : 2011.09.23
  • Accepted : 2011.11.26
  • Published : 2012.02.20

Abstract

Electrochemical characteristics of nitrite ion were investigated at a poly(methylene blue)-modified glassy carbon electrode by cyclic voltammetry and differential pulse voltammetry. The poly(methylene blue)-modified glassy carbon electrode exhibited enhanced anodic signals for nitrite. The effects of key parameters on the detection of nitrite were evaluated at the modified electrode, such as pH, accumulation time, and scan rate. Under optimum condition, the chemically modified electrode can detect nitrite in the concentration range $2.0{\times}10^{-6}$ to $5.0{\times}10^{-4}$ M with the detection limit of $2.0{\times}10^{-6}$ M and a correlation coefficient of 0.999. The detection of nitrite using the chemically modified electrode was not affected by common ions such as $Na^+$, $K^+$, $Ca^{2+}$, $Cl^-$, $HPO_4^{2-}$ and $H_2PO_4^- $. The modified electrode showed good stability and reproducibility. The practical application of the present method was successfully applied to the determination of nitrite ion in cabbage samples.

Keywords

References

  1. Alonse, B.; Etxaniz, B.; Martinez, M. D. Food. Addit. Contam. 1992, 9, 111. https://doi.org/10.1080/02652039209374054
  2. Bruning-Fann, C. S.; Kaneene, J. B. Vet. Hum. Toxicol. 1993, 35, 5211.
  3. Tarafder, P. K.; Rathore, D. P. S. Analyst. 1988, 113, 1073. https://doi.org/10.1039/an9881301073
  4. Wang, G. F.; Satake, M.; Horita, K. Talanta 1998, 46, 671. https://doi.org/10.1016/S0039-9140(97)00325-1
  5. Matteo, V. D.; Esposito, E. J. Chromatogr. A 1997, 789, 213. https://doi.org/10.1016/S0021-9673(97)00851-0
  6. Ito, K.; Takayama, Y.; Makabe, N.; Mitsui, R.; Hirokawa, T. J. Chromatogr. A 2005, 1083, 63. https://doi.org/10.1016/j.chroma.2005.05.073
  7. Caro, C. A.; Bedioui, F.; Zagal, J. H. Electrochim. Acta 2002, 47, 1489. https://doi.org/10.1016/S0013-4686(01)00875-1
  8. Pournaghi-Azar, M. H.; Dastangoo, H. J. Electroanal. Chem. 2004, 567, 211. https://doi.org/10.1016/j.jelechem.2003.12.027
  9. Santos, W.; Sousa, A.; Luz, R; Damos, F.; Kubota, L.; Tanaka, A.; Tanaka, S. Talanta 2006, 70, 588. https://doi.org/10.1016/j.talanta.2006.01.023
  10. Kalimuthu, S.; John, S. A. Electrochem. Commun. 2009, 11, 1065. https://doi.org/10.1016/j.elecom.2009.03.015
  11. Jiang, L.; Wang, R.; Li, X.; Jiang, L.; Lu, G. Electrochem. Commun. 2005, 7, 597. https://doi.org/10.1016/j.elecom.2005.04.009
  12. Zhao, K.; Song, H.; Zhung, S.; Dai, L.; He, P.; Fang, Y. Electrochem. Commun. 2007, 9, 65. https://doi.org/10.1016/j.elecom.2006.07.001
  13. Xiao, F.; Mo, Z.; Zhao, F.; Zeng, B. Electrochem. Commun. 2008, 10, 1740. https://doi.org/10.1016/j.elecom.2008.09.004
  14. Zhu, N.; Xu, Q.; Li, S.; Gao, H. Electrochem. Commun. 2009, 11, 2308. https://doi.org/10.1016/j.elecom.2009.10.018
  15. Wang, S.; Yin, Y.; Lin, X. Electrochem. Commun. 2004, 6, 259. https://doi.org/10.1016/j.elecom.2003.12.008
  16. Liu, L.; Tian, L.; Xu, H.; Lu, N. J. Electroanal. Chem. 2006, 587, 213. https://doi.org/10.1016/j.jelechem.2005.11.010
  17. Karyakin, A. A.; Strakhova, A. K.; Karyakina, E. E.; Varfolomeyev, S. D.; Yatsimirsky, A. K. Bioelectrochem. Bioenerg. 1993, 32, 35. https://doi.org/10.1016/0302-4598(93)80018-P
  18. Silber, A.; Hampp, N.; Schuhmann, W. Biosens. Bioelectron. 1996, 11, 215. https://doi.org/10.1016/0956-5663(96)88408-9
  19. Brett, C. M. A.; Inzelt, G.; Kertesz, V. Anal. Chim. Acta 1999, 385, 119. https://doi.org/10.1016/S0003-2670(98)00808-3
  20. Chen, S. M. J. Electroanal. Chem. 1998, 457, 23. https://doi.org/10.1016/S0022-0728(98)00143-0
  21. Wang, F.; Wang, S. Z.; Zhu, L. Chinese Vegetables 2009, 14, 17.

Cited by

  1. Rapid voltammetric determination of maltol in some foods and beverages using a poly(methylene blue)/graphene-modified glassy carbon electrode vol.18, pp.3, 2014, https://doi.org/10.1007/s10008-013-2297-7
  2. Simultaneous electrocatalytic determination of lead and cadmium ions employing a poly(methylene blue)/graphene modified glassy carbon electrode vol.51, pp.1, 2015, https://doi.org/10.1134/S1023193515010036
  3. A Novel Cerium Tungstate Nanosheets Modified Electrode for the Effective Electrochemical Detection of Carcinogenic Nitrite Ions vol.29, pp.10, 2017, https://doi.org/10.1002/elan.201700120
  4. Preparation of Alkylated and Perfluorinated ZnPc-modified Carbon Nanotubes and their Application as Conductive Fillers for Poly(vinylidene fluoride) Composite Dielectrics vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11246
  5. Voltammetric sensing of nitrite in aqueous solution using titanium dioxide anchored multiwalled carbon nanotubes pp.1862-0760, 2017, https://doi.org/10.1007/s11581-017-2358-5
  6. /C Electrode Modified with In Situ Generated Manganese(II) Phthalocyanine vol.26, pp.3, 2014, https://doi.org/10.1002/elan.201300468
  7. Voltammetric determination of nitrite with gold nanoparticles/poly(methylene blue)-modified pencil graphite electrode: application in food and water samples vol.24, pp.10, 2018, https://doi.org/10.1007/s11581-017-2429-7
  8. A non-covalent interaction of Schiff base copper alanine complex with green synthesized reduced graphene oxide for highly selective electrochemical detection of nitrite vol.6, pp.109, 2012, https://doi.org/10.1039/c6ra20580a