DOI QR코드

DOI QR Code

The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus

  • Dwidar, Mohammed (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology) ;
  • Monnappa, Ajay Kalanjana (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology) ;
  • Mitchell, Robert J. (School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2011.10.31
  • Published : 2012.02.29

Abstract

Bdellovibrio bacteriovorus is a predatory bacterium which attacks and consumes other bacterial strains, including the well known pathogens E. coli O157 : H7, Salmonella typhimurium and Helicobacter pylori. This remarkable activity has been the focus of research for nearly five decades, with exciting practical applications to medical, agriculture and farming practices recently being published. This article reviews many of the exciting steps research into this bacterium, and similar bacteria, has taken, focusing primarily on their use as both an antibiotic to remove harmful and pathogenic bacteria and as a probiotic to help curb and control the bacterial populations within the intestinal tract. Owing to the unique and dual nature of this bacterium, this review proposes the use of "amphibiotic" to describe these bacteria and their activities.

Keywords

References

  1. Martin, M. O. (2002) Predatory prokaryotes: An emerging research opportunity. J. Mol. Microb. Biotech. 4, 467-477.
  2. Burnham, J. C., Collart, S. A. and Highison, B. W. (1981) Entrapment and lysis of the cyanobacterium phormidium-luridum by aqueous colonies of myxococcus-Xanthus Pco2. Arch. Microbiol. 129, 285-294. https://doi.org/10.1007/BF00414699
  3. Guerrero, R., Pedrosalio, C., Esteve, I., Mas, J., Chase, D. and Margulis, L. (1986) Predatory prokaryotes-predation and primary consumption evolved in bacteria. Proc. Natl. Acad. Sci. U.S.A. 83, 2138-2142. https://doi.org/10.1073/pnas.83.7.2138
  4. Ruby, E. G. and Rittenberg, S. C. (1983) Differentiation after premature release of intraperiplasmically growing Bdellovibrio bacteriovorous. J. Bacteriol. 154, 32-40.
  5. Stolp, H. and Starr, M. P. (1963) Bdellovibrio bacteriovorus Gen. Et Sp. N., a Predatory, Ectoparasitic, and Bacteriolytic Microorganism. Antonie Leeuwenhoek 29, 217-248. https://doi.org/10.1007/BF02046064
  6. Williams, H. N., Schoeffield, A. J., Guether, D., Kelley, J., Shah, D. and Falkler, W. A. (1995) Recovery of Bdellovibrios from Submerged Surfaces and Other Aquatic Habitats. Microbial. Ecol. 29, 39-48.
  7. Fry, J. C. and Staples, D. G. (1976) Distribution of Bdellovibrio-bacteriovorus in Sewage Works, River Water, and Sediments. Appl. Environ. Microb. 31, 469-474.
  8. Klein, D. A. and Casida, L. E. (1967) Occurrence and Enumeration of Bdellovibrio bacteriovorus in Soil Capable of Parasitizing Escherichia Coli and Indigenous Soil Bacteria. Can. J. Microbiol. 13, 1235-1241. https://doi.org/10.1139/m67-168
  9. Richardson, I. R. (1990) The Incidence of Bdellovibrio Spp in Man-Made Water-Systems-Coexistence with Legionellas. J. Appl. Bacteriol. 69, 134-140. https://doi.org/10.1111/j.1365-2672.1990.tb02921.x
  10. Scherff, R. H. (1973) Control of Bacterial Blight of Soybean by Bdellovibrio-bacteriovorus. Phytopathology 63, 400-402. https://doi.org/10.1094/Phyto-63-400
  11. Fratamico, P. M. and Cooke, P. H. (1996) Isolation of Bdellovibrios that prey on Escherichia coli O157:H7 and Salmonella species and application for removal of prey from stainless steel surfaces. J. Food Safety 16, 161-173. https://doi.org/10.1111/j.1745-4565.1996.tb00157.x
  12. Cotter, T. W. and Thomashow, M. F. (1992) A Conjugation Procedure for Bdellovibrio-bacteriovorus and Its Use to Identify DNA-Sequences That Enhance the Plaque-Forming Ability of a Spontaneous Host-Independent Mutant. J. Bacteriol. 174, 6011-6017. https://doi.org/10.1128/jb.174.19.6011-6017.1992
  13. Cotter, T. W. and Thomashow, M. F. (1992) Identification of a Bdellovibrio-bacteriovorus Genetic-Locus, Hit, Associated with the Host-Independent Phenotype. J. Bacteriol.174, 6018-6024. https://doi.org/10.1128/jb.174.19.6018-6024.1992
  14. Schuster, S. C., Rendulic, S., Jagtap, P., Rosinus, A., Eppinger, M., Baar, C., Lanz, C., Keller, H., Lambert, C., Evans, K. J., Goesmann, A., Meyer, F. and Sockett, R. E. (2004) A predator unmasked: Life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303, 689-692. https://doi.org/10.1126/science.1093027
  15. Pan, A., Chanda, I. and Chakrabarti, J. (2011) Analysis of the genome and proteome composition of Bdellovibrio bacteriovorus: Indication for recent prey-derived horizontal gene transfer. Genomics 98, 213-222. https://doi.org/10.1016/j.ygeno.2011.06.007
  16. Schwudke, D., Strauch, E., Krueger, M. and Appel, B. (2001) Taxonomic studies of predatory Bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst. Appl. Microbiol. 24, 385-394. https://doi.org/10.1078/0723-2020-00042
  17. Snyder, A. R., Williams, H. N., Baer, M. L., Walker, K. E. and Stine, O. C. (2002) 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. Int. J. Syst. Evol. Microbiol. 52, 2089-2094. https://doi.org/10.1099/ijs.0.02261-0
  18. Roschanski, N. and Strauch, E. (2011) Assessment of the mobilizable vector plasmids pSUP202 and pSUP404.2 as genetic tools for the predatory bacterium Bdellovibrio bacteriovorus. Curr. Microbiol. 62, 589-596. https://doi.org/10.1007/s00284-010-9748-5
  19. Nakamura, M. (1972) Alteration of Shigella pathogenicity by other bacteria. Am. J. Clin. Nutr. 25, 1441-1451. https://doi.org/10.1093/ajcn/25.12.1441
  20. Markelova, N. Y. (2010) Interaction of Bdellovibrio bacteriovorus with bacteria Campylobacter jejuni and Helicobacter pylori. Microbiology 79, 777-779. https://doi.org/10.1134/S0026261710060093
  21. Atterbury, R. J., Hobley, L., Till, R., Lambert, C., Capeness, M. J., Lerner, T. R., Fenton, A. K., Barrow, P. and Sockett, R. E. (2011) Effects of Orally Administered Bdellovibrio bacteriovorus on the Well-Being and Salmonella Colonization of Young Chicks. Appl. Environ. Microb. 77, 5794-5803. https://doi.org/10.1128/AEM.00426-11
  22. Boileau, M. J. and Clinkenbeard, K. D. (2011) Assessment of Bdellovibrio bacteriovorus 109j Viability in Bovine Tears. J. Vet. Intern. Med. 25, 759-760.
  23. Dashiff, A., Junka, R. A., Libera, M. and Kadouri, D. E. (2011) Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J. Appl. Microbiol. 110, 431-444. https://doi.org/10.1111/j.1365-2672.2010.04900.x
  24. Dashiff, A. and Kadouri, D. E. (2011) Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol. Oral. Microbiol. 26, 19-34. https://doi.org/10.1111/j.2041-1014.2010.00592.x
  25. Van Essche, M., Quirynen, M., Sliepen, I., Loozen, G., Boon, N., Van Eldere, J. and Teughels, W. (2011) Killing of anaerobic pathogens by predatory bacteria. Mol. Oral Microbiol. 26, 52-61. https://doi.org/10.1111/j.2041-1014.2010.00595.x
  26. Verklova, Z. S. (1973) A Study of virulence, toxicity and immunogenicity of various strains of Bdellovibrio bacteriovorus. Gig. Sanit. 38, 4.
  27. Westergaard, J. M. and Kramer, T. T. (1977) Bdellovibrio and Intestinal Flora of Vertebrates. Appl. Environ. Microb. 34, 506-511.
  28. Lenz, R. W. and Hespell, R. B. (1978) Attempts to Grow Bdellovibrios Micurgically-Injected into Animal-Cells. Arch. Microbiol. 119, 245-248. https://doi.org/10.1007/BF00405402
  29. Schwudke, D., Linscheid, M., Strauch, E., Appel, B., Zahringer, U., Moll, H., Muller, M., Brecker, L., Gronow, S. and Lindner, B. (2003) The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing alpha-D-Mannoses that replace phosphate residues: similarities and differences between the lipid As and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100. The J. Biol. Chem. 278, 27502-27512. https://doi.org/10.1074/jbc.M303012200
  30. Govan, J. R. W. and Deretic, V. (1996) Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60, 539-574.
  31. Van Essche, M., Quirynen, M., Sliepen, I., Van Eldere, J. and Teughels, W. (2009) Bdellovibrio bacteriovorus Attacks Aggregatibacter actinomycetemcomitans. J. Dent. Res. 88, 182-186. https://doi.org/10.1177/0022034508329693
  32. Simpson, F. J. and Robinson, J. (1968) Some Energy-Producing Systems in Bdellovibrio bacteriovorus Strain 6-5-S. Can. J. Biochem. Cell. B. 46, 865-873. https://doi.org/10.1139/o68-129
  33. Wood, T. K., Hong, S. H. and Ma, Q. (2011) Engineering biofilm formation and dispersal. Trends. Biotechnol. 29, 87-94. https://doi.org/10.1016/j.tibtech.2010.11.001
  34. Stewart, P. S. and Costerton, J. W. (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358, 135-138. https://doi.org/10.1016/S0140-6736(01)05321-1
  35. O'Connell, H. A., Kottkamp, G. S., Eppelbaum, J. L., Stubblefield, B. A., Gilbert, S. E. and Gilbert, E. S. (2006) Influences of biofilm structure and antibiotic resistance mechanisms on indirect pathogenicity in a model polymicrobial biofilm. Appl. Environ. Microb. 72, 5013-5019. https://doi.org/10.1128/AEM.02474-05
  36. Mah, T. F., Pitts, B., Pellock, B., Walker, G. C., Stewart, P. S. and O'Toole, G. A. (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426, 306-310. https://doi.org/10.1038/nature02122
  37. Stewart, P. S. (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 292, 107-113. https://doi.org/10.1078/1438-4221-00196
  38. Doolittle, M. M., Cooney, J. J. and Caldwell, D. E. (1996) Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes. J. Ind. Microbiol. 16, 331-341. https://doi.org/10.1007/BF01570111
  39. Kadouri, D. and O'Toole, G. A. (2005) Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl. Environ. Microb. 71, 4044-4051. https://doi.org/10.1128/AEM.71.7.4044-4051.2005
  40. Tenovuo, J. (2002) Antimicrobial agents in saliva--protection for the whole body. J. Dent. Res. 81, 807-809. https://doi.org/10.1177/154405910208101202
  41. Slowey, R. R., Eidelman, S. and Klebanoff, S. J. (1968) Antibacterial activity of the purified peroxidase from human parotid saliva. J. Bacteriol. 56, 575-579.
  42. Van Nieuw Amerongen, A., Bolscher, J. G. and Veerman, E. C. (2004) Salivary proteins: protective and diagnostic value in cariology? Caries Research 38, 247-253. https://doi.org/10.1159/000077762
  43. Germida, J. J. (1987) Isolation of Bdellovibrio Spp That Prey on Azospirillum-Brasilense in Soil. Can J. Microbiol. 33, 459-461. https://doi.org/10.1139/m87-076
  44. Markelova, N. Y. and Kerzhentsev, A. S. (1998) Isolation of a new strain of the genus Bdellovibrio from plant rhizosphere and its lytic spectrum. Microbiology 67, 696-699.
  45. Song, W. Y. (2004) Identification and characterization of Bdellovibrio bacteriovorus, a predator of Burkholderia glumae. J. Microbiol. Biotechn. 14, 48-55.
  46. Patterson, J. A. and Burkholder, K. M. (2003) Application of prebiotics and probiotics in poultry production. Poultry Science 82, 627-631. https://doi.org/10.1093/ps/82.4.627
  47. Chu, W. H. and Zhu, W. (2010) Isolation of Bdellovibrio as Biological Therapeutic Agents Used For the Treatment of Aeromonas hydrophila Infection in Fish. Zoonoses Public Hlth. 57, 258-264.
  48. Fratamico, P. M. and Whiting, R. C. (1995) Ability of Bdellovibrio-bacteriovorus 109j to Lyse Gram-Negative Food-Borne Pathogenic and Spoilage Bacteria. J. Food Protect 58, 160-164. https://doi.org/10.4315/0362-028X-58.2.160
  49. Cai, J. and Lu, F. (2010) The protective effect of Bdellovibrio-and-like organisms (BALO) on tilapia fish fillets against Salmonella enterica ssp enterica serovar Typhimurium. Lett. Appl. Microbiol. 51, 625-631. https://doi.org/10.1111/j.1472-765X.2010.02943.x
  50. Shemesh, Y. and Jurkevitch, E. (2004) Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ. Microbiol. 6, 12-18. https://doi.org/10.1046/j.1462-2920.2003.00530.x
  51. Nordmann, P., Cuzon, G. and Naas, T. (2009) The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet. Infect. Dis. 9, 228-236. https://doi.org/10.1016/S1473-3099(09)70054-4
  52. Neu, H. C. (1992) The Crisis in Antibiotic-Resistance. Science 257, 1064-1073. https://doi.org/10.1126/science.257.5073.1064
  53. Aaron, S. D., Denis, M. S., Ramotar, K., Vandemheen, K., Tullis, E., Ferris, W., Chan, F., Lee, C. and Slinger, R. (2007) Infection with Burkholderia cepacia complex bacteria and pulmonary exacerbations of cystic fibrosis. Chest 131, 1188-1196. https://doi.org/10.1378/chest.06-2611
  54. Schoeffield, A. J., Williams, H. N., Turng, B. F. and Falkler, W. A. (1996) A comparison of the survival of intraperiplasmic and attack phase Bdellovibrios with reduced oxygen. Microbial. Ecol. 32, 35-46.
  55. Sockett, R. E. and Lambert, C. (2004) Bdellovibrio as therapeutic agents: a predatory renaissance? Nat. Rev. Microbiol. 2, 669-675. https://doi.org/10.1038/nrmicro959
  56. Koval, S. F. and Hynes, S. H. (1991) Effect of Paracrystalline Protein Surface-Layers on Predation by Bdellovibriobacteriovorus. J. Bacteriol. 173, 2244-2249. https://doi.org/10.1128/jb.173.7.2244-2249.1991
  57. Varon, M. (1981) Interaction of Bdellovibrio with Its Prey in Mixed Microbial-Populations. Microbial. Ecol. 7, 97-105. https://doi.org/10.1007/BF02032491
  58. Hobley, L., King, J. R. and Sockett, R. E. (2006) Bdellovibrio predation in the presence of decoys: Three-way bacterial interactions revealed by mathematical and experimental analyses. Appl. Environ. Microb. 72, 6757-6765. https://doi.org/10.1128/AEM.00844-06
  59. Dashiff, A., Keeling, T. G. and Kadouri, D. E. (2011) Inhibition of Predation by Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus via Host Cell Metabolic Activity in the Presence of Carbohydrates. Appl. Environ. Microb. 77, 2224-2231. https://doi.org/10.1128/AEM.02565-10
  60. Thomashow, M. F. and Rittenberg, S. C. (1978) Penicillin-Induced Formation of Osmotically Stable Spheroplasts in Nongrowing Bdellovibrio-bacteriovorus. J. Bacteriol. 133, 1484-1491.

Cited by

  1. Susceptibility of Select Agents to Predation by Predatory Bacteria vol.3, pp.4, 2015, https://doi.org/10.3390/microorganisms3040903
  2. Catch me if you can: dispersal and foraging of Bdellovibrio bacteriovorus 109J along mycelia vol.11, pp.2, 2017, https://doi.org/10.1038/ismej.2016.135
  3. Inhibition effect ofBdellovibrio bacteriovoruson the corrosion of X70 pipeline steel induced by sulfate-reducing bacteria vol.63, pp.4, 2016, https://doi.org/10.1108/ACMM-10-2014-1447
  4. Effect of predatory bacteria on the gut bacterial microbiota in rats vol.7, 2017, https://doi.org/10.1038/srep43483
  5. Bacterial predation: 75 years and counting! vol.18, pp.3, 2016, https://doi.org/10.1111/1462-2920.13171
  6. Bdellovibrio bacteriovorus Inhibits Staphylococcus aureus Biofilm Formation and Invasion into Human Epithelial Cells vol.4, pp.1, 2015, https://doi.org/10.1038/srep03811
  7. Predatory bacteria are nontoxic to the rabbit ocular surface vol.6, pp.1, 2016, https://doi.org/10.1038/srep30987
  8. Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues vol.112, pp.44, 2015, https://doi.org/10.1073/pnas.1515749112
  9. Investigating the Responses of Human Epithelial Cells to Predatory Bacteria vol.6, pp.1, 2016, https://doi.org/10.1038/srep33485
  10. Bacteriophages or bacteriovores - that is the question: variations on the theme of eatingStenotrophomonas maltophilia vol.8, pp.3, 2016, https://doi.org/10.1111/1758-2229.12399
  11. Application of bacterial predation to mitigate recombinant bacterial populations and their DNA vol.57, 2013, https://doi.org/10.1016/j.soilbio.2012.09.010
  12. Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus Cystic fibrosis isolates vol.5, 2014, https://doi.org/10.3389/fmicb.2014.00280
  13. Direct Demonstration of Bacterial Biofilms on Prosthetic Mesh after Ventral Herniorrhaphy vol.16, pp.1, 2015, https://doi.org/10.1089/sur.2014.026
  14. Evaluating the potential of marine Bacteriovorax sp. DA5 as a biocontrol agent against vibriosis in Litopenaeus vannamei larvae vol.173, pp.1-2, 2014, https://doi.org/10.1016/j.vetmic.2014.07.022
  15. Pretreatment with alum or powdered activated carbon reduces bacterial predation-associated irreversible fouling of membranes vol.30, pp.10, 2014, https://doi.org/10.1080/08927014.2014.970538
  16. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement vol.11, pp.1, 2017, https://doi.org/10.1007/s11783-017-0900-3
  17. Sepsis and septic shock: Pathogenesis and treatment perspectives vol.40, 2017, https://doi.org/10.1016/j.jcrc.2017.04.015
  18. Attack-Phase Bdellovibrio bacteriovorus Responses to Extracellular Nutrients Are Analogous to Those Seen During Late Intraperiplasmic Growth 2017, https://doi.org/10.1007/s00248-017-1003-1
  19. Controlling Bdellovibrio bacteriovorus Gene Expression and Predation Using Synthetic Riboswitches 2017, https://doi.org/10.1021/acssynbio.7b00171
  20. Felix d’Herelle and our microbial future vol.7, pp.12, 2012, https://doi.org/10.2217/fmb.12.115
  21. The Predatory Bacterium Bdellovibrio bacteriovorus Aspartyl-tRNA Synthetase Recognizes tRNAAsn as a Substrate vol.9, pp.10, 2014, https://doi.org/10.1371/journal.pone.0110842
  22. Salmonella enterica serovar Choleraesuis on fresh-cut cucumber slices after reduction treatments vol.70, 2016, https://doi.org/10.1016/j.foodcont.2016.05.030
  23. Effects ofBdellovibrioand Like Organisms on Survival and Growth Performance of Juvenile Turbot,Scophthalmus maximus vol.47, pp.5, 2016, https://doi.org/10.1111/jwas.12304
  24. Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model vol.5, pp.1, 2015, https://doi.org/10.1038/srep12899
  25. Examining the efficacy of intravenous administration of predatory bacteria in rats vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02041-3
  26. Investigation into the Efficacy of Bdellovibrio bacteriovorus as a Novel Preharvest Intervention To Control Escherichia coli O157:H7 and Salmonella in Cattle Using an In Vitro Model vol.78, pp.9, 2015, https://doi.org/10.4315/0362-028X.JFP-15-016
  27. Predatory prokaryotes wage war against eye infections vol.9, pp.4, 2014, https://doi.org/10.2217/fmb.14.19
  28. Predation Efficacy of Bdellovibrio bacteriovorus on Multidrug-Resistant Clinical Pathogens and Their Corresponding Biofilms vol.70, pp.5, 2017, https://doi.org/10.7883/yoken.JJID.2016.405
  29. Predatory Bacteria: A Potential Ally against Multidrug-Resistant Gram-Negative Pathogens vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0063397
  30. Effect of Predatory Bacteria on Human Cell Lines vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0161242
  31. Indole negatively impacts predation byBdellovibrio bacteriovorusand its release from the bdelloplast vol.17, pp.4, 2015, https://doi.org/10.1111/1462-2920.12463
  32. Higher Prevalence and Abundance of Bdellovibrio bacteriovorus in the Human Gut of Healthy Subjects vol.8, pp.4, 2013, https://doi.org/10.1371/journal.pone.0061608
  33. An Eye to a Kill: Using Predatory Bacteria to Control Gram-Negative Pathogens Associated with Ocular Infections vol.8, pp.6, 2013, https://doi.org/10.1371/journal.pone.0066723
  34. Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem? vol.7, 2016, https://doi.org/10.3389/fmicb.2016.00455
  35. Assessing the effects of bacterial predation on membrane biofouling vol.47, pp.16, 2013, https://doi.org/10.1016/j.watres.2013.07.023
  36. Finding alternatives to antibiotics vol.1323, pp.1, 2014, https://doi.org/10.1111/nyas.12468
  37. Effect of Bdellovibrio bacteriovorus HD100 on multispecies oral communities vol.35, 2015, https://doi.org/10.1016/j.anaerobe.2014.09.011
  38. Measurement of Predation and Biofilm Formation under Different Ambient Oxygen Conditions Using a Simple Gasbag-Based System vol.79, pp.17, 2013, https://doi.org/10.1128/AEM.01193-13
  39. Bdellovibrio and Like Organisms Enhanced Growth and Survival of Penaeus monodon and Altered Bacterial Community Structures in Its Rearing Water vol.80, pp.20, 2014, https://doi.org/10.1128/AEM.01737-14
  40. Penile Microbiota and Female Partner Bacterial Vaginosis in Rakai, Uganda vol.6, pp.3, 2015, https://doi.org/10.1128/mBio.00589-15
  41. Purification and Host Specificity of Predatory Halobacteriovorax Isolates from Seawater vol.82, pp.3, 2016, https://doi.org/10.1128/AEM.03136-15
  42. Visualizing Bdellovibrio bacteriovorus by Using the tdTomato Fluorescent Protein vol.82, pp.6, 2015, https://doi.org/10.1128/AEM.03611-15
  43. Burden in Rat Lungs vol.7, pp.6, 2016, https://doi.org/10.1128/mBio.01847-16
  44. BspK, a Serine Protease from the Predatory Bacterium Bdellovibrio bacteriovorus with Utility for Analysis of Therapeutic Antibodies vol.83, pp.4, 2016, https://doi.org/10.1128/AEM.03037-16
  45. Killing the killer: predation between protists and predatory bacteria vol.364, pp.9, 2017, https://doi.org/10.1093/femsle/fnx089
  46. Individual Patterns of Complexity in Cystic Fibrosis Lung Microbiota, Including Predator Bacteria, over a 1-Year Period vol.8, pp.5, 2017, https://doi.org/10.1128/mBio.00959-17
  47. Studying microbial functionality within the gut ecosystem by systems biology vol.13, pp.1, 2018, https://doi.org/10.1186/s12263-018-0594-6
  48. vol.125, pp.4, 2018, https://doi.org/10.1111/jam.14027
  49. Bdellovibrio bacteriovorus HD100, a predator of Gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation vol.12, pp.8, 2018, https://doi.org/10.1038/s41396-018-0154-5
  50. USTB-06 vol.124, pp.5, 2018, https://doi.org/10.1111/jam.13682
  51. Sepsis: mechanisms of bacterial injury to the patient vol.27, pp.1, 2019, https://doi.org/10.1186/s13049-019-0596-4