DOI QR코드

DOI QR Code

Purification and characterization of a thermostable glutamate dehydrogenase from a thermophilic bacterium isolated from a sterilization drying oven

  • Amenabar, Maximiliano J. (Fundacion Cientificay Cultural Biociencia) ;
  • Blamey, Jenny M. (Fundacion Cientificay Cultural Biociencia)
  • Received : 2011.09.22
  • Accepted : 2011.10.18
  • Published : 2012.02.29

Abstract

Glutamate dehydrogenase from axenic bacterial cultures of a new microorganism, called GWE1, isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular-exclusion liquid chromatography. The apparent molecular mass of the native enzyme was 250.5 kDa and was shown to be an hexamer with similar subunits of molecular mass 40.5 kDa. For glutamate oxidation, the enzyme showed an optimal pH and temperature of 8.0 and $70^{\circ}C$, respectively. In contrast to other glutamate dehydrogenases isolated from bacteria, the enzyme isolated in this study can use both $NAD^+$ and $NADP^+$ as electron acceptors, displaying more affinity for $NADP^+$ than for $NAD^+$. No activity was detected with NADH or NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionally thermostable, maintaining more than 70% of activity after incubating at $100^{\circ}C$ for more than five hours suggesting being one of the most thermoestable enzymes reported in the family of dehydrogenases.

Keywords

References

  1. Consalvi, V., Chiaraluce, R., Politi, L., Gambacorta, A., De Rosa, M. and Scandurra, R. (1991) Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Eur. J. Biochem. 196, 459-467. https://doi.org/10.1111/j.1432-1033.1991.tb15837.x
  2. Ohshima, T. and Nishida, N. (1993) Purification and properties of extremely thermostable glutamate dehydrogenases from two hyperthermophilic archaebacteria Pyrococcus woesei and Pyrococcus furiosus. Biosci. Biotechnol. Biochem. 57, 945-951. https://doi.org/10.1271/bbb.57.945
  3. Diruggiero, J. and Robb, F. T. (1995) Expression and in vitro assembly of recombinant glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Appl. Environ. Microbiol. 61, 159-164.
  4. Minambres, B., Olivera, E. R., Jensen, R. A. and Luengo, J. M. (2000) A new class of glutamate dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus. J. Biol. Chem. 275, 39529-39542. https://doi.org/10.1074/jbc.M005136200
  5. Brunhuber, N. M. and Blanchard, J. S. (1994) The biochemistry and enzymology of amino acid dehydrogenases. Crit. Rev. Biochem. Mol. Biol. 29, 415-467. https://doi.org/10.3109/10409239409083486
  6. Smith, E. L., Austen, B. M., Blumenthal, K. M. and Nyc, J. F. (1975) Glutamate dehydrogenases; In The Enzymes (Boyer PD, Ed. ), pp. 293-367, Academic Press, New York, U.S.A.
  7. Ma, K., Robb, F. T. and Adams, W. W. (1994) Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis. Appl. Environ. Microbiol. 60, 562-568.
  8. Kobayashi, T., Higuchi, S., Kimura, K., Kudo, T. and Horikoshi, K. (1995) Properties of glutamate dehydrogenase and its involvement in alanine production in a hyperthermophilic archaeon, Thermococcus profundus. J. Biochem. 118, 587-592. https://doi.org/10.1093/oxfordjournals.jbchem.a124950
  9. Ahn, J. Y., Lee, K. S., Choi, S. Y. and Cho, S. W. (2000) Regulatory properties of glutamate dehydrogenase from Sulfolobus solfataricus. Mol. Cells. 10, 25-31. https://doi.org/10.1007/s10059-000-0025-5
  10. Consalvi, V., Chiaraluce, R., Politi, L., Vaccaro, R., De Rosa, M. and Scandurra, R. (1991) Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Eur. J. Biochem. 202, 1189-1196. https://doi.org/10.1111/j.1432-1033.1991.tb16489.x
  11. Robb, F. T., Park, J. and Adams, W. W. (1992) Characterization of extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. Biochim. Biophys. Acta. 1120, 267-272. https://doi.org/10.1016/0167-4838(92)90247-B
  12. Niehaus, F., Bertoldo, C., Kahler, M. and Antranikian, G. (1999) Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51, 711-729. https://doi.org/10.1007/s002530051456
  13. Van den Burg, B. (2003) Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6, 213-218. https://doi.org/10.1016/S1369-5274(03)00060-2
  14. Lineweaver, H. and Burk, D. (1934) The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658-666. https://doi.org/10.1021/ja01318a036
  15. Klump, H., Diruggiero, J., Kessel, M., Park, J., Adams, W. W. and Robb, F. T. (1992) Glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. J. Biol. Chem. 267, 22681-22685.
  16. Danson, M. J., Hough, D. W., Russell, R. J. M., Taylor, G. L. and Pearl, L. (1996) Enzyme thermostability and thermoactivity. Protein Eng. 9, 629-630. https://doi.org/10.1093/protein/9.8.629
  17. Fiala, G. and Stetter, K. O. (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at $100{^{\circ}C}$. Arch. Microbiol. 145, 56-61. https://doi.org/10.1007/BF00413027
  18. Adams, W. W. (1993) Enzymes and proteins from organisms that grow near and above $100{^{\circ}C}$. Annu. Rev. Microbiol. 47, 627-658. https://doi.org/10.1146/annurev.mi.47.100193.003211
  19. Antranikian, G., Vorgias, C. E. and Bertoldo, C. (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv. Biochem. Eng. Biotechnol. 96, 219-262.
  20. Blochl, E., Rachel, R., Burggraf, S., Hafenbrandl, D., Jannasch, H. W. and Stetter, K. O. (1997) Pyrolobus fumarii, gen. and sp. nov. represents a novel group of archaea, estending the upper temperature limit for life to 113${^{\circ}C}$. Extremophiles 1, 14-21. https://doi.org/10.1007/s007920050010
  21. Anderson, D. E., Hurleym, J. H., Nicholsonm, H., Baasem, W. A. and Matthewsm, B. W. (1993) Hydrophobic core repacking and aromatic-aromatic interaction in the thermostable mutant of T4 lysozyme Ser 117-> Phe. Protein Sci. 2, 1285-1290. https://doi.org/10.1002/pro.5560020811
  22. Russell, R. J. M., Hough, D. W., Danson, M. J. and Taylor, G. L. (1994) The crystal structure of citrate synthase from the thermophilic archaeon Thermoplasma acidophilum. Structure 2, 1157-1167. https://doi.org/10.1016/S0969-2126(94)00118-9
  23. Britton, K. L., Baker, P. J., Borges, K. M., Engel, P. C., Pasquo, A., Rice, D. W., Robb, F. T., Scandurra, R., Stillman, T. J. and Yip, K. S. P. (1995) Insights into thermal stability from a comparison of the glutamate dehydrogenases from Pyrococcus furiosus and Thermococcus litoralis. Eur. J. Biochem. 229, 688-695. https://doi.org/10.1111/j.1432-1033.1995.tb20515.x
  24. Spassov, V. Z., Karshikoff, A. D. and Ladenstein, R. (1995) The optimization of protein-solvent interactions: thermostability and the role of hydrophobic and electrostatic interactions. Protein Sci. 4, 1516-1527. https://doi.org/10.1002/pro.5560040809
  25. Vetriani, C., Maeder, D. L., Tolliday, N., Yip, K. S. P., Stillman, T. J., Britton, K. L., Rice, D. W., Klump, H. H. and Robb, F. T. (1998) Protein thermostability above 100${^{\circ}C}$: A key role for ionic interactions. Proc. Natl. Acad. Sci. U.S.A. 95, 12300-12305. https://doi.org/10.1073/pnas.95.21.12300
  26. Hough, D. W. and Danson, M. J. (1999) Extremozymes. Curr. Opin. Chem. Biol. 3, 39-46. https://doi.org/10.1016/S1367-5931(99)80008-8
  27. Vieille, C. and Zeikus, G. (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1-43. https://doi.org/10.1128/MMBR.65.1.1-43.2001
  28. Bradford, M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  29. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  30. Sammons, D. W., Adams, L. D. and Nishizawa, E. E. (1981) Ultrsensitive silver-based color staining of peptides in poliacrilamide gel electroforesis. Electrophoresis 2, 135-141. https://doi.org/10.1002/elps.1150020303

Cited by

  1. Lipid composition of thermophilic Geobacillus sp. strain GWE1, isolated from sterilization oven vol.180, 2014, https://doi.org/10.1016/j.chemphyslip.2014.02.005