DOI QR코드

DOI QR Code

Functional study of Villin 2 protein expressed in longissimus dorsi muscle of Korean native cattle in different growth stages

  • Jin, Yong-Cheng (Department of Animal Science/Bio-resources and Development Institute Pusan National University) ;
  • Han, Jeng-A (Department of Agricultural Biotechnology, Seoul National University) ;
  • Xu, Cheng-Xiong (Department of Molecular Oncology, H Lee Moffitt Cancer Center) ;
  • Kang, Sang-Kee (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Sang-Hun (Department of Biology, Kyung Hee University) ;
  • Seo, Kang-Suk (Department of Biology, Kyung Hee University) ;
  • Yoon, Du-Hak (Department of Animal Science, Kyungpook National University) ;
  • Choi, Yun-Jaie (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Hong-Gu (Department of Animal Science/Bio-resources and Development Institute Pusan National University)
  • Received : 2011.09.07
  • Accepted : 2011.10.21
  • Published : 2012.02.29

Abstract

The aim of this study was to investigate protein profiles related to the induction of adipogenesis within the bovine longissimus dorsi muscle (BLDM) by proteomic analysis. We analyzed BLDM proteins at different growth stages to clarify the physiological mechanisms of marbled muscle development in 20 head of Korean native cattle (11 month: 10 head, 17 month: 10 head). BLDM proteins were analyzed by two-dimensional electrophoresis and image analysis. Villin 2 was specifically identified by mass spectrometry and a protein search engine. Villin 2 protein expression in BLDM decreased during the fat development stage in test steers. In a Western blot cell culture study of spontaneously immortal bovine muscle fibroblasts, the abundance of Villin 2 was shown to be down-regulated during differentiation into muscle. In 3T3-L1 mouse embryonic fibroblasts, Villin 2 was decreased during differentiation into adipocytes. The results suggest that Villin 2 may be related to the induction of transdifferentiation and adipogenesis in bovine longissimus dorsi muscle.

Keywords

References

  1. Harper, G. S. and Pethick, D. W. (2004) How might marbling begin? Aust. J. Exp. Ag. 44, 653-662. https://doi.org/10.1071/EA02114
  2. Hausman, G. J., Dodson, M. V., Ajuwon, K., Azain, M., Barnes, K. M., Guan, L. L., Jiang, Z., Poulos, S. P., Sainz, R. D., Smith, S., Spurlock, M., Novakofski, J., Fernyhough, M. E. and Bergen, W. G. (2009) Board-invited review: The biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 87, 1218-1246. https://doi.org/10.2527/jas.2008-1427
  3. Smith, S. B., Kawachi, H., Choi, C. B., Choi, C. W., Wu, G. and Sawyer, J. E. (2009) Cellular regulation of bovine intramuscular adipose tissue development and composition. J. Anim. Sci. 87(14 Suppl), E72-E82. https://doi.org/10.2527/jas.2008-1340
  4. Farmer, S. R. (2006) Transcriptional control of adipocyte formation. Cell Metab. 4, 263-273. https://doi.org/10.1016/j.cmet.2006.07.001
  5. Du, M., Tong, J., Zhao, J. F., Zhao, J., Underwood, K. R., Zhu, M., Ford, S. P. and Nathanielsz, P. W. (2010) Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 88. E51-60. https://doi.org/10.2527/jas.2009-2311
  6. Gang, E. J., Jeong, J. A., Hong, S. H., Hwang, S. H., Kim, S. W., Yang, I. H., Ahn, C., Han, H. and Kim, H. (2004) Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells. 22, 617-624.
  7. Gang, E. J., Bosnakovski, D., Simsek, T., To, K. and Perlingeiro, R. C. (2008) Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage. Exp. Cell Res. 314,1721-1733. https://doi.org/10.1016/j.yexcr.2008.02.016
  8. Grefte, S., Kuijpers-Jagtman, A. M., Torensma, R. and Von den Hoff, J. W. (2007) Skeletal muscle development and regeneration. Stem Cells Dev. 16, 857-868. https://doi.org/10.1089/scd.2007.0058
  9. Liu, Y., Yan, X., Sun, Z., Chen, B., Han, Q., Li, J. and Zhao, R. C. (2007) Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev. 16, 695-706. https://doi.org/10.1089/scd.2006.0118
  10. Rosen, E. D. and MacDougald, O. A. (2006) Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell. Biol. 7, 885-896. https://doi.org/10.1038/nrm2066
  11. Du, M., Yin, J. and Zhu, M. J. (2010) Cellular signaling pathways regulating the initial stage of adipogenesis and marbling of skeletal muscle. Meat Sci. 86, 103-109. https://doi.org/10.1016/j.meatsci.2010.04.027
  12. Puente, L. G., Carriere, J. F., Kelly, J. F. and Megeney, L. A. (2004) Comparative analysis of phosphoprotein-enriched myocyte proteomes reveals widespread alterations during differentiation. FEBS Lett. 574, 138-144. https://doi.org/10.1016/j.febslet.2004.08.019
  13. Kasper, M., Hofer, D., Woodcock-Mitchell, J., Migheli, A., Attanasio, A., Rudolf, T., Muller, M. and Drenckhahn, D. (1994) Colocalization of cytokeratin 18 and villin in type III alveolar cells (brush cells) of the rat lung. Histochemistry. 101, 57-62. https://doi.org/10.1007/BF00315832
  14. Toyoshima, K., Seta, Y., Takeda, S. and Harada, H. (1998) Identification of Merkel cells by an antibody to villin. J. Histochem. Cytochem. 46,1329-1334. https://doi.org/10.1177/002215549804601113
  15. Bretscher, A., Edwards, K. and Fehon, R. G. (2002) ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol. 3, 586-599. https://doi.org/10.1038/nrm882
  16. Craig, S. W. and Powell, L. D. (1980) Regulation of actin polymerization by villin, a 95,000 dalton cytoskeletal component of intestinal brush borders. Cell 22, 739-746. https://doi.org/10.1016/0092-8674(80)90550-4
  17. Takeuchi, K., Kawashima, A., Nagafuchi, A. and Tsukita, S. (1994) Structural diversity of band 4.1 superfamily members. J. Cell Sci. 107,1921-1928.
  18. Brown, K. L., Birkenhead, D., Lai, J. C., Li, L., Li, R. and Johnson, P. (2005) Regulation of hyaluronan binding by F-actin and colocalization of CD44 and phosphorylated ezrin/radixin/ moesin (ERM) proteins in myeloid cells. Exp. Cell Res. 303, 400-414. https://doi.org/10.1016/j.yexcr.2004.10.002
  19. Elliott, B. E., Meens, J. A., SenGupta, S. K., Louvard, D. and Arpin, M. (2005) The membrane cytoskeletal crosslinker ezrin is required for metastasis of breast carcinoma cells. Breast Cancer Res. 7, 365-373. https://doi.org/10.1186/bcr1006
  20. Heiska, L., Alfthan, K., Gronholm, M., Vilja, P., Vaheri, A. and Carpen, O. (1998) Association of ezrin with intercellular adhesion molecule-1 and-2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J. Biol. Chem. 273, 21893-21900. https://doi.org/10.1074/jbc.273.34.21893
  21. Hirao, M., Sato, N., Kondo, T., Yonemura, S., Monden, M., Sasaki, T., Takai, Y., Tsukita, S. and Tsukita, S. (1996) Regulation mechanism of ERM/plasma membrane association: possible involvement of phosphatidylinositol turnover and rho-dependent signalling pathway. J. Cell Biol. 135, 37-52. https://doi.org/10.1083/jcb.135.1.37
  22. Legg, J. W. and Isacke, C. M. (1998) Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr. Biol. 8, 705-708. https://doi.org/10.1016/S0960-9822(98)70277-5
  23. Tsukita, S., Yonemura, S. and Tsukita, S. (1997) ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr. Opin. Cell Biol. 9, 70-75. https://doi.org/10.1016/S0955-0674(97)80154-8
  24. Yonemura, S., Hirao, M., Doi, Y., Takahashi, N., Kondo, T., Tsukita, S. and Tsukita, S. (1998) Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J. Cell Biol. 140, 885-895. https://doi.org/10.1083/jcb.140.4.885
  25. Hiscox, S. and Jiang, W. G. (1999) Ezrin regulates cell-cell and cell-matrix adhesion, a possible role with Ecadherin/ beta-catenin. J. Cell Sci.112, 3081-3090.
  26. Bohling, T., Turunen, O., Jaaskelainen, J., Carpen, O., Sainio, M., Wahlstrom, T., Vaheri, A. and Haltia, M. (1996) Ezrin expression in stromal cells of capillary hemangioblastoma. An immunohistochemical survey of brain tumors. Am. J. Pathol. 148, 367-373.
  27. Khanna, C., Wan, X., Bose, S., Cassaday, R., Olomu, O., Mendoza, A., Yeung, C., Gorlick, R., Hewitt, S. M. and Helman, L. J. (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat. Med. 10, 182-186. https://doi.org/10.1038/nm982
  28. Yu, Y., Khan, J., Khanna, C., Helman, L., Meltzer, P. S. and Merlino, G. (2004) Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat. Med. 10, 175-181. https://doi.org/10.1038/nm966
  29. Valdman, A., Fang, X., Pang, S. T., Nilsson, B., Ekman, P. and Egevad, L. (2005) Ezrin expression in prostate cancer and benign prostatic tissue. Eur. Urol. 48, 852-857. https://doi.org/10.1016/j.eururo.2005.03.013
  30. Wang, L. L. (2005) Biology of osteogenic sarcoma. Cancer J. 11, 294-305. https://doi.org/10.1097/00130404-200507000-00005
  31. Perera, C. N., Chin, H. G., Duru, N. and Camarillo, I. G. (2008) Leptin-regulated gene expression in MCF-7 breast cancer cells: mechanistic insights into leptin-regulated mammary tumor growth and progression. J. Endocrinol. 199, 221-233. https://doi.org/10.1677/JOE-08-0215
  32. Gavert, N., Ben-Shmuel, A., Lemmon, V., Brabletz, T. and Ben-Ze'ev, A. (2010) Nuclear factor-kappaB signaling and ezrin are essential for L1-mediated metastasis of colon cancer cells. J. Cell Sci. 123, 2135-2143. https://doi.org/10.1242/jcs.069542
  33. Conacci-Sorrell, M. E., Ben-Yedidia, T., Shtutman, M., Feinstein, E., Einat, P. and Ben-Ze'ev, A. (2002) Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev. 16, 2058-2072. https://doi.org/10.1101/gad.227502
  34. Gavert, N., Conacci-Sorrell, M., Gast, D., Schneider, A., Altevogt, P., Brabletz, T. and Ben-Ze'ev, A. (2005) L1, a novel target of ${\beta}$-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J. Cell Biol. 168, 633-642. https://doi.org/10.1083/jcb.200408051
  35. Ross, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L. and MacDougald, O. A. (2000) Inhibition of adipogenesis by Wnt signaling. Science 289, 950-953. https://doi.org/10.1126/science.289.5481.950
  36. Singh, R., Artaza, J. N., Taylor, W. E., Braga, M., Yuan, X., Gonzalez-Cadavid, N. F. and Bhasin, S. (2006) Testosterone inhibits adipogenic differentiation in3T3-L1 cells: nuclear translocation of androgen receptor complex with beta-catenin and T-cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors. Endocrinology. 147,141-154. https://doi.org/10.1210/en.2004-1649
  37. Chuan, Y. C., Pang, S. T., Cedazo-Minguez, A., Norstedt, G., Pousette, A. and Flores-Morales, A. (2006) Androgen induction of prostate cancer cell invasion is mediated by ezrin. J. Biol. Chem. 281,29938-29948. https://doi.org/10.1074/jbc.M602237200
  38. Chateauvieux, S., Ichante, J. L., Delorme, B., Frouin, V., Pietu, G., Langonne, A., Gallay, N., Sensebe, L., Martin, M. T., Moore, K. A. and Charbord, P. (2007) Molecular profile of mouse stromal mesenchymal stem cells. Physiol. Genomics. 29,128-138. https://doi.org/10.1152/physiolgenomics.00197.2006
  39. Lee, H. G., Han, J. A., Lee, K. B., Kim, E. B., Jin, Y. C., Oh, J. J., Hwang, J. H., Kang, H. S., Kim, S. H., Seo, K. S., Kang, S. K. and Choi, Y. J. (2010) Buffer Optimization for Bovine Longissimus Muscle Tissues: Proteome Analysis of Korean Native Cattle Using 2-Dimensional Gel Electrophoresis. Food Sci. Biotechnol. 19, 1107-1112. https://doi.org/10.1007/s10068-010-0157-0
  40. Jin, X., Jung, J. E., Kwak, S., Lee, J. S., Kim, T. K., Xu, C., Hong, Z., Li, Z., Kim, S. M., Pian, X., You,S., Choi,Y. J. and Kim, H. (2006) Myogenic differentiation of functional p53-and Rb-deficient immortalized and transformed bovine fibroblasts by MyoD. Mol. Cells. 21, 206-212.

Cited by

  1. Lithium chloride’s inhibition of 3T3-L1 cell differentiation by regulating the Wnt/β-catenin pathway and enhancing villin 2 expression vol.25, pp.4, 2016, https://doi.org/10.1007/s10068-016-0183-7
  2. Apoptosis induction of human leukemia U937 cells by 7,8-dihydroxyflavone hydrate through modulation of the Bcl-2 family of proteins and the MAPKs signaling pathway vol.751, pp.2, 2013, https://doi.org/10.1016/j.mrgentox.2012.12.002