DOI QR코드

DOI QR Code

Effect of Pore Structures of a Ti-49.5Ni (at%) Alloy on Bone Cell Adhesion

Ti-49.5Ni (at%)합금의 다공성 구조가 뼈 세포 흡착에 미치는 영향

  • Im, Yeon-Min (Division of Materials Eng., Gyeongsang National University) ;
  • Choi, Jung-Il (Department of Anatomy, Institute of Health Science and School of Medicine, Gyeongsang National University) ;
  • Khang, Dong-Woo (School of Materials Science and Engineering and Center for Nano-Morphic Biological Energy, Gyeongsang National University) ;
  • Nam, Tae-Hyun (Division of Materials Eng., Gyeongsang National University)
  • 임연민 (국립경상대학교 나노.신소재공학부, RIGET) ;
  • 최정일 (국립경상대학교 의과대학 해부학 교실) ;
  • 강동우 (국립경상대학교 나노 구조 생체에너지 융합연구단) ;
  • 남태현 (국립경상대학교 나노.신소재공학부, RIGET)
  • Received : 2011.12.14
  • Accepted : 2012.01.08
  • Published : 2012.02.27

Abstract

Ti-Ni alloys are widely used in numerous biomedical applications (e.g., orthodontics, cardiovascular science, orthopaedics) due to their distinctive thermomechanical and mechanical properties, such as the shape memory effect, superelasticity and low elastic modulus. In order to increase the biocompatibility of Ti-Ni alloys, many surface modification techniques, such as the sol-gel technique, plasma immersion ion implantation (PIII), laser surface melting, plasma spraying, and chemical vapor deposition, have been employed. In this study, a Ti-49.5Ni (at%) alloy was electrochemically etched in 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF electrolytes to modify the surface morphology. The morphology, element distribution, crystal structure, roughness and energy of the surface were investigated by scanning electron microscopy (SEM), energy-dispersive Xray spectrometry (EDS), X-ray diffractometry (XRD), atomic force microscopy (AFM) and contact angle analysis. Micro-sized pores were formed on the Ti-49.5Ni (at%) alloy surface by electrochemical etching with 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF. The volume fractions of the pores were increased by increasing the concentration of the HF electrolytes. Depending on the HF concentration, different pore sizes, heights, surface roughness levels, and surface energy levels were obtained. To investigate the osteoblast adhesion of the electrochemically etched Ti-49.5Ni (at%) alloy, a MTT test was performed. The degree of osteoblast adhesion was increased at a high concentration of HF-treated surface structures.

Keywords

References

  1. Z. Bai, M. J. Filiaggi and J. R. Dahn, Surf. Sci., 603, 839 (2009). https://doi.org/10.1016/j.susc.2009.01.040
  2. I. Papageorgiou, C. Brown, R. Schins, S. Singh, R. Newson, S. Davis, J. Fisher, E. Ingham and C. P. Case, Biomaterials, 28, 2946 (2007). https://doi.org/10.1016/j.biomaterials.2007.02.034
  3. L. Reclaru, H. Luthy, P. -Y. Eschler, A. Blatter and C. Susz, Biomaterials, 26, 4358 (2005). https://doi.org/10.1016/j.biomaterials.2004.11.018
  4. L. -H. Li, Y. -M. Kong, H. -W. Kim, Y. -W. Kim, H. -E. Kim, S. -J. Heo and J. -Y. Koak, Biomaterials, 25, 2867 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.048
  5. D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee and Y. F. Missirlis, Biomaterials, 22, 1241 (2001). https://doi.org/10.1016/S0142-9612(00)00274-X
  6. A. K. Shukla, R. Balasubramaniam and S. Bhargava, Intermetallics, 13, 631 (2005). https://doi.org/10.1016/j.intermet.2004.10.001
  7. J. I. Kim, H. Y. Kim, T. Inamura, H. Hosoda and S. Miyazaki, Mater. Sci. Eng., 403, 334 (2005). https://doi.org/10.1016/j.msea.2005.05.050
  8. G. S. Firstov, R. G. Vitchev, H. Kumar, B. Blanpain and J. Van Humbeeck, Biomaterials, 23, 4863 (2002). https://doi.org/10.1016/S0142-9612(02)00244-2
  9. C. L. Chu, T. Hu, S. L. Wu, Y. S. Dong, L. H. Yin, Y. P. Pu, P. H. Lin, C. Y. Chung, K. W. K. Yeung and P. K. Chu, Acta Biomaterialia, 3, 795 (2007). https://doi.org/10.1016/j.actbio.2007.03.002
  10. A. Bansiddhi, T. D. Sargeant, S. I. Stupp and D. C. Dunand, Acta Biomaterialia, 4, 773 (2008). https://doi.org/10.1016/j.actbio.2008.02.009
  11. K. Fushimi, M. Startmann and A. W. Hassel, Electrochim. Acta, 52, 1290 (2006). https://doi.org/10.1016/j.electacta.2006.07.030
  12. P. Shi, F. T. Cheng and H. C. Man, Mater. Lett., 61, 2385 (2007). https://doi.org/10.1016/j.matlet.2006.09.020
  13. M. F. Chen, X. J. Yang, Y. Liu, S. L Zhu, Z. D. Cui and H. C. Man, Surf. Coating. Tech., 173, 229 (2003). https://doi.org/10.1016/S0257-8972(03)00733-3
  14. S. Barison, S. Cattarin, S. Daolio, M. Musiani and A. Tuissi, Electrochim. Acta, 50, 11 (2004). https://doi.org/10.1016/j.electacta.2004.07.007