DOI QR코드

DOI QR Code

Synthesis and Characterization of Y2O3 Powders by a Modified Solvothermal Process

  • Jeong, Kwang-Jin (Department of Convergence Materials Science and Engineering, Changwon National University) ;
  • Bae, Dong-Sik (Department of Convergence Materials Science and Engineering, Changwon National University)
  • Received : 2011.11.22
  • Accepted : 2012.01.17
  • Published : 2012.02.27

Abstract

$Y_2O_3$ nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently, many studies have focused on controlling the size and morphology of $Y_2O_3$ in order to obtain better material performance. $Y_2O_3$ powders were prepared under a modified solvothermal condition involving precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at temperatures at $250^{\circ}C$ after a 6h process. The properties of the $Y_2O_3$ powders were studied as a function of the solvent ratio. The synthesis of $Y_2O_3$ crystalline particles is possible under a modified solvothermal condition in a water/ethylene glycol solution. Solvothermal processing condition parameters including the pH, reaction temperature and solvent ratio, have significant effects on the formation, phase component, morphology and particle size of yttria powders. Ethylene glycol is a versatile, widely used, inexpensive, and safe capping organic molecule for uniform nanoparticles besides as a solvent. The characterization of the synthesized Y2O3 powders were studied by XRD, SEM (FE-SEM) and TG/DSC. An X-ray diffraction analysis of the synthesized powders indicated the formation of the $Y_2O_3$ cubic structure upon calcination. The average crystalline sizes and distribution of the synthesized $Y_2O_3$ powders was less than 2 um and broad, respectively. The synthesized particles were spherical and hexagonal in shape. The morphology of the synthesized powders changed with the water and ethylene glycol ratio. The average size and shape of the synthesized particles could be controlled by adjusting the solvent ratio.

Keywords

References

  1. G. D. Wilk, R. M. Wallace and J. M. Anthony, J. Appl. Phys., 89, 5243 (2001). https://doi.org/10.1063/1.1361065
  2. P. de Rouffignac, J. S. Park and R. G. Gordon, Chem. Mater., 17, 4808 (2005). https://doi.org/10.1021/cm050624+
  3. N. McN. Alford, J. D. Birchall, W. J. Clegg, M. A. Harmer, K. Kendall and D. H. Jones, J. Mater. Sci., 23, 761 (1988). https://doi.org/10.1007/BF01153964
  4. B. T. Kilbourn, Encyclopedia of Materials Science and Engineering vol. 7, p. 5509-5510, ed. M. B. Bever, Pergamon Press Ltd., Oxford, UK (1986).
  5. T. Okuda, S. Nomura, S. Sillkakura, K. Asabe, S. Tanouf and M. Fujiwara, in Proceedings of the International Conference on Solid State Powder Processing (Indianapolis, USA October 1989), ed. A. H. Clauer and J. J. de Barbadillo (The Minerals, Metals and Materials Society, TMS, USA, 1990) p. 195-202.
  6. X. Wang, J. Zhuang, Q. Peng and Y. Li, Nature, 437 (7055), 121 (2005). https://doi.org/10.1038/nature03968
  7. R. Si, Y. -W. Zhang, L. -P. You and C. -H. Yan, Angew. Chem. Int. Ed., 44(21), 3256 (2005). https://doi.org/10.1002/anie.200462573
  8. G. Xu, Y. -W. Zhang, C. -S. Liao and C. -H. Yan, J. Am. Ceram. Soc., 87(12), 2275 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb07504.x
  9. X. Wang, X. -M. Sun, D. Yu, B. -S. Zou and Y. Li, Adv. Mater., 15(17), 1442 (2003). https://doi.org/10.1002/adma.200305164
  10. C. R. Ronda, T. Justel and H. Nikol, J. Alloy. Comp., 275-277, 669 (1998). https://doi.org/10.1016/S0925-8388(98)00416-2
  11. Takayasu Ikegami, Ji-Guang Li, Toshiyuki Mori and Yusuke Moriyoshi, J. Am. Ceram. Soc., 85, 1725 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00342.x
  12. B. N. Kim, K. Hiraga, K. Morita and Y. Sakka, Nature, 413, 288 (2001). https://doi.org/10.1038/35095025
  13. A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards and C. Schardt, Nature, 430, 761 (2004).
  14. T. S. Lin, L. G. Sobotka and W. Froncisz, Nature, 333, 21 (1988).
  15. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  16. A. M. E. Suresh Raj, C. M. Magdalane and K. S. Nagaraja, Phys. Status Solidi, 191, 230 (2002). https://doi.org/10.1002/1521-396X(200205)191:1<230::AID-PSSA230>3.0.CO;2-E
  17. X. Wang, X. M. Sun, D. Yu, B. S. Zou and Y. Li, Adv. Mater., 15, 1442 (2003). https://doi.org/10.1002/adma.200305164
  18. X. Wu, Y. Tao, F. Gao, L. Dong and Z. Hu, J. Cryst. Growth, 277, 643 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.098
  19. Z. Xu, Z. Hong, Q. Zhao, L. Peng and P. Zhang, J. Rare Earths, 24, 111 (2006). https://doi.org/10.1016/S1002-0721(07)60336-6
  20. M. Han, N. E. Shi, W. L. Zhang, B. J. Li, J. H. Sun, K. J. Chen, J. M. Zhu, X. Wang and Z. Xu, Chem. Eur. J., 14, 1615 (2007). https://doi.org/10.1002/chem.200700808
  21. X. Li, Q. Li, Z. Xia, L. Wang, W. Yan, J. Wang and R. I. Boughton, Cryst. Growth Des., 6, 2193 (2006). https://doi.org/10.1021/cg0600400
  22. R. Si, Y. W. Zhang, L. P. You and C. H. Yan, Angew. Chem. Int. Ed., 44, 3256 (2005). https://doi.org/10.1002/anie.200462573
  23. A. Towata, M. Sivakumar, K. Yasui, T. Tuziuti, T. Kozuka and Y. Iida, J. Mater. Sci., 43, 1214 (2008). https://doi.org/10.1007/s10853-007-2287-1
  24. M. D. Rasmunssen, M. Akinc, D. Milius and M. G. McTaggart, Ceram. Bull., 62(2), 314 (1985).
  25. P. Maestro, D. Huguenin, A. Seigneurin, F. Deneuve, P. Le Lann and J. F. Berar, J. Elecrochem. Soc., 139, 1479 (1992). https://doi.org/10.1149/1.2069435
  26. T. Hours, P. Bergez, J. Charpin, A. Larbot, C. Guizard and L. Cot, Ceram. Bull., 71, 200 (1992).
  27. L. R. Furlong and L. P. Domingues, Ceram. Bull., 45, 1501 (1966).
  28. H. J. Kim, J. H. Son and D. S. Bae, Kor. J. Mater. Res., 21(8), 415 (2011). https://doi.org/10.3740/MRSK.2011.21.8.415
  29. D. S. Bae, K. S. Han, S. B. Cho and S. H. Choi, J. Kor. Associ. Cryst. Growth, 17(1), 167 (1997).
  30. S. B. Cho, S. Venigalla, J. H. Adair, Science, Technology and Applications of Colloidal Suspensions, p. 139-150, ed. J. H. Adair, J. A. Casey, C. A. Randall and S. Venigalla, American Ceramic Society, USA (1995).
  31. Y. Wang, X. Jiang and Y. Xia, J. Am. Chem. Soc., 125, 16176 (2003). https://doi.org/10.1021/ja037743f
  32. L. Jiang, G. Sun, Z. Zhou, S. Sun, Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhou and Q. Xin, J. Phys. Chem. B, 109, 8774 (2005). https://doi.org/10.1021/jp050334g
  33. C. Feldmann, Adv. Funct. Mater., 13, 101 (2003). https://doi.org/10.1002/adfm.200390014
  34. S. Zhong, S. Wang, Q. Liu, Y. Wang, S. Wang, J. Chen, R. Xu and L. Luo, Mater. Res. Bull., 44, 2201 (2009). https://doi.org/10.1016/j.materresbull.2009.08.009