DOI QR코드

DOI QR Code

Photocatalytic Performance of ZnS and TiO2 Supported on AC Under Visible Light Irradiation

  • Meng, Ze-Da (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Cho, Sun-Bok (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ghosh, Trisha (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Choi, Jong-Geun (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Park, Chong-Yeon (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2012.01.09
  • Accepted : 2012.02.07
  • Published : 2012.02.27

Abstract

AC and ZnS modified $TiO_2$ composites (AC/ZnS/$TiO_2$) were prepared using a sol-gel method. The composite obtained was characterized by Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, scanning electron microscope (SEM) analysis, and according to the UV-vis absorption spectra (UV-vis). XRD patterns of the composites showed that the AC/ZnS/$TiO_2$ composites contain a typical single and clear anatase phase. The surface properties as observed by SEM present the characterization of the texture of the AC/ZnS/$TiO_2$ composites, showing a homogenous composition in the particles showing the micro-surface structures and morphology of the composites. The EDX spectra of the elemental identification showed the presence of C and Ti with Zn and S peaks for the AC/ZnS/$TiO_2$ composite. UV-vis patterns of the composites showed that these composites had greater photocatalytic activity under visible light irradiation. A rhodamine B (Rh.B) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of Rh.B was determined using UV/Vis spectrophotometry. An increase in the photocatalytic activity was observed. From the photocatalytic results, the excellent activity of the Y-fullerene/$TiO_2$ composites for the degradation of methylene blue under visible irradiation could be attributed to an increase in the photo-absorption effect caused by the ZnS and to the cooperative effect of the AC.

Keywords

References

  1. N. N. Lichtin, M. Avudaithai, E. Berman and A. Grayfer, Sol. Energ., 56, 377 (1996). https://doi.org/10.1016/0038-092X(96)00014-X
  2. C. Minero, E. Pelizzetti, S. Malato and J. Blanco, Sol. Energ., 56, 411 (1996). https://doi.org/10.1016/0038-092X(96)00028-X
  3. Z. D. Meng, L. Zhu, J. G. Choi, M. L. Chen and W. C. Oh, J. Mater. Chem., 21, 7596 (2011). https://doi.org/10.1039/c1jm10301f
  4. Z. D. Meng, K. Y. Cho and W. C. Oh, Asian J. Chem., 23, 847 (2011).
  5. W. C. Oh and F. J. Zhang, J. Photo. Sci., 1, 63 (2010).
  6. Y. Li and F. Wasgestian, J. Photochem. Photobiol. Chem., 112, 255 (1998), https://doi.org/10.1016/S1010-6030(97)00293-1
  7. K. T. Ranjit, R. Krishnamoorthy and B. Viswanathan, J. Photochem. Photobiol. Chem., 81, 55 (1994). https://doi.org/10.1016/1010-6030(93)03772-9
  8. T. Huang, X. Lin, J. Xing, W. Wang, Z. Shan and F. Huang, Mater. Sci. Eng. B, 141, 49 (2007). https://doi.org/10.1016/j.mseb.2007.05.007
  9. J. F. Porter, Y. G. Li and C. K. Chan, J. Mater. Sci., 34, 1523 (1999). https://doi.org/10.1023/A:1004560129347
  10. Z. D. Meng, K. Zhang and W. C. Oh, Kor. J. Mater. Res., 20, 228 (2010). https://doi.org/10.3740/MRSK.2010.20.4.228
  11. W. Xie, Y. Li, W. Sun, J. Huang H. Xie and X. Zhao, J. Photochem. Photobiol. Chem., 216, 149 (2010). https://doi.org/10.1016/j.jphotochem.2010.06.032
  12. A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C Photochem. Rev., 1, 1 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2
  13. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004
  14. M. Asilturk, F. Sayllkan and E. Arpac, J. Photochem. Photobiol. Chem., 203, 64 (2009). https://doi.org/10.1016/j.jphotochem.2008.12.021
  15. M. Andersson, L. Osterlund, S. Ljungstrom and A. Palmqvist, J. Phys. Chem. B, 106, 10674 (2002). https://doi.org/10.1021/jp025715y
  16. H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B, 104, 4585 (2000). https://doi.org/10.1021/jp000049r
  17. Z. D. Meng, M. L. Chen, F. J. Zhang, L. Zhu, J. G. Choi and W. C. Oh, Asian J. Chem. 23, 2327 (2011).
  18. T. Mori, J. Suzudi, K. Fujimoto, M. Watanabe and Y. Hasegawa, Appl. Catal. B Environ., 23, 283 (1999). https://doi.org/10.1016/S0926-3373(99)00086-7
  19. T. Wang, H. Wang, P. Xu, X. Zhao, Y. Liu and S. Chao, Thin Solid Films, 334, 103 (1998). https://doi.org/10.1016/S0040-6090(98)01125-0
  20. Z. D. Meng and W. C. Oh, Ultrason. Sonochem., 18, 757 (2011). https://doi.org/10.1016/j.ultsonch.2010.10.008
  21. V. Stengl, S. Bakardjieva, N. Murafa, V. Houskova and K. Lang, Microporous Mesoporous Mater., 110, 370 (2008). https://doi.org/10.1016/j.micromeso.2007.06.052
  22. Z. Zhou, D. He, W. Xu, F. Ren and Y. Qian, Mater. Lett., 61, 4500 (2007). https://doi.org/10.1016/j.matlet.2007.02.041
  23. L. Zhang and L. Yang, Cryst. Res. Tech., 43, 1022 (2008). https://doi.org/10.1002/crat.200800092
  24. Z. D. Meng, J. G. Choi, J. Y. Park, L. Zhu and W. C. Oh, J. Photo. Sci., 2, 27 (2011).
  25. Y. Li, S. Peng, F. Jiang, G. Lu and S. Li, J. Serb. Chem. Soc., 72, 393 (2007). https://doi.org/10.2298/JSC0704393L
  26. J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan and C. L. Bai, Angew. Chem. Int. Ed., 44, 1269 (2005). https://doi.org/10.1002/anie.200462057
  27. G. C. De, A. M. Roy and S. S. Bhattacharya, Int. J. Hydrogen Energ., 21, 19 (1996). https://doi.org/10.1016/0360-3199(95)00031-8
  28. A. M. Roy and G. C. De, J. Photochem. Photobiol. Chem., 157, 87 (2003). https://doi.org/10.1016/S1010-6030(02)00430-6
  29. K. Zhang, D. Jing, Q. Chen and L. Guo, Int. J. Hydrogen Energ., 35, 2048 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.143
  30. N. Uzar, S. Okur and M. C. Arikan, Sensor. Actuator. Phys., 167, 188 (2011). https://doi.org/10.1016/j.sna.2010.10.005
  31. T. Torimoto, S. Ito, S. Kuwabata and H. Yoneyama, Environ. Sci. Tech., 30, 1275 (1996). https://doi.org/10.1021/es950483k
  32. J. Arana, J. M. Dona-Rodriguez, E. T. Rendon, C. G. i Cabo, O. Gonzalez-Diaz, J. A. Herrera-Melian, J. Perez-Pena, G. Colon and J. A. Navio, Appl. Catal. B Environ., 44, 153 (2003). https://doi.org/10.1016/S0926-3373(03)00075-4
  33. X. Zhang and L. Lei, J. Hazard. Mater., 153, 827 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.052
  34. C. Han, Z. Li and J. Shen, J. Hazard. Mater., 168, 215 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.020
  35. X. Zhang, M. Zhou and L. Lei, Carbon, 43, 1700 (2005). https://doi.org/10.1016/j.carbon.2005.02.013
  36. C. C. Chan, C. C. Chang, W. C. Hsu, S. K. Wang and J. Lin, Chem. Eng. J., 152, 492 (2009) https://doi.org/10.1016/j.cej.2009.05.012
  37. F. J. Zhang, M. L. Chen, K. Zhang and W. C. Oh, Bull. Korean Chem. Soc., 31, 133 (2010). https://doi.org/10.5012/bkcs.2010.31.01.133
  38. F. J. Zhang, J. Liu, M. L. Chen and W. C. Oh, J. Korean Ceram. Soc. 46, 263 (2009). https://doi.org/10.4191/KCERS.2009.46.3.263
  39. J. Yang, H. Bai, Q. Jiang and J. Lian, Thin Solid Films, 516, 1736 (2008). https://doi.org/10.1016/j.tsf.2007.05.034
  40. X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang and K. Klabunde, J. Catal., 260, 128 (2008). https://doi.org/10.1016/j.jcat.2008.09.016
  41. M. Lei, Y. B. Zhang, X. L. Fu, Y. T. Huang, L. Zhang and J. H. Xiao, Mater. Lett., 65, 3577 (2011). https://doi.org/10.1016/j.matlet.2011.07.065
  42. I. Tsuji, H. Kato and A. Kudo, Angew. Chem. Int. Ed., 44, 3565 (2005). https://doi.org/10.1002/anie.200500314
  43. Y. Li, G. Chen, C. Zhou and J. Sun, Chem. Comm., 15, 2020 (2009).
  44. N. Kakuta, K. H. Park, M. F. Finlayson, A. Ueno, A. J. Bard, A. Campion, M. A. Fox, S. E. Webber and J. M. White, J. Phys. Chem., 89, 732 (1985). https://doi.org/10.1021/j100251a002
  45. Z. D. Meng, L. Zhu, J. G. Choi, C. Y. Park and W. C. Oh, Nanoscale Res. Lett., 6, 459 (2011). https://doi.org/10.1186/1556-276X-6-459