DOI QR코드

DOI QR Code

Synthesis and Photoluminescence Properties of Red-Emitting (Y,Al)VO4:Eu3+ Nanophosphors

적색 발광 (Y,Al)VO4:Eu3+ 형광체 나노입자의 합성과 발광 특성

  • Seo, Jung-Hyun (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Choi, Sung-Ho (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University) ;
  • Jung, Ha-Kyun (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • Received : 2011.12.06
  • Accepted : 2012.02.13
  • Published : 2012.02.27

Abstract

Red-emitting $Eu^{3+}$-activated $(Y_{0.95-x}Al_x)VO_4$ (0 < x $\leq$ 0.12) nanophosphors with the particle size of ~30 nm and the high crystallinity have been successfully synthesized by a hydrothermal reaction. In the synthetic process, deionized water as a solvent and ethylene glycol as a capping agent were used. The crystalline phase, particle morphology, and the photoluminescence properties of the excitation spectrum, emission intensity, color coordinates and decay time, of the prepared $(Y_{0.95-x}Al_x)VO_4:Eu^{3+}$ nanophosphors were compared with those of the $YVO_4:Eu^{3+}$. Under 147 nm excitation, $(Y_{0.95-x}Al_x)VO_4$ nanophosphors showed strong red luminescence due to the $^5D_0-^7F_2$ transition of $Eu^{3+}$ at 619 nm. The luminescence intensity of $YVO_4:Eu^{3+}$ enhanced with partial substitution of $Al^{3+}$ for $Y^{3+}$ and the maximum emission intensity was accomplished at the $Al^{3+}$ content of 10 mol%. By the addition of $Al^{3+}$, decay time of the $(Y,Al)VO_4:Eu^{3+}$ nanophosphor was decreased in comparison with that of the $YVO_4:Eu^{3+}$ nanophosphor. Also, the substitution of $Al^{3+}$ for $Y^{3+}$ invited the improvement of color coordinates due to the increase of R/O ratio in emission intensity. For the formation of transparent layer, the red nanophosphors were fabricated to the paste with ethyl celluloses, anhydrous terpineol, ethanol and deionized water. By screen printing method, a transparent red phosphor layer was formed onto a glass substrate from the paste. The transparent red phosphor layer exhibited the red emission at 619 nm under 147 nm excitation and the transmittance of ~80% at 600 nm.

Keywords

References

  1. K. I. Seo, J. H. Park, J. S. Kim, G. C. Kim and J. H. Yoo, J. Lumin., 129, 715 (2009). https://doi.org/10.1016/j.jlumin.2009.02.001
  2. S. Choi, S. H. Tae, J. H. Seo and H. K. Jung, J. Solid State Chem., 184(6), 1540 (2011). https://doi.org/10.1016/j.jssc.2011.04.032
  3. H. H. Yoo, H. Nersisyan, H. I. Won and C. W. Won, Kor. J. Mater. Res., 21(6), 352 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.6.352
  4. D. S. Zang, K. Y. Ko, H. K. Park, D. H. Yoon and Y. R. Do, J. Electrochem. Soc., 155(5), J111 (2008). https://doi.org/10.1149/1.2868769
  5. H. K. Yang, K. S. Shim, B. K. Moon, B. C. Choi, J. H. Jeong, S. S. Yi and J. H. Kim, Thin Solid Films, 516, 5577 (2008). https://doi.org/10.1016/j.tsf.2007.07.129
  6. S. Sharma, A. K. Srivastava, H. Singh, M. Raja and H. K. Dwivedi, Displays, 31(3), 122 (2010). https://doi.org/10.1016/j.displa.2010.03.001
  7. W. S. Song, Y. S. Kim and H. Yang, J. Electrochem. Soc., 158(5), J137 (2011). https://doi.org/10.1149/1.3556614
  8. X. Xiao, G. Lu, S. Shen, D. Mao, Y. Guo and Y. Wang, Mater. Sci. Eng. B, 176, 72 (2011). https://doi.org/10.1016/j.mseb.2010.09.005
  9. R. S. Yadav, R. K. Dutta, M. Kumar and A. C. Pandey, J. Lumin., 129, 1078 (2009). https://doi.org/10.1016/j.jlumin.2009.04.032
  10. Z. Hou, P. Yang, C. Li, L. Wang, H. Lian, Z. Quan and J. Lin, Chem. Mater., 20, 6686 (2008). https://doi.org/10.1021/cm801538t
  11. Y. Li and G. Hong, J. Solid State Chem., 178(3), 645 (2005). https://doi.org/10.1016/j.jssc.2004.12.018
  12. X. Wu, Y. Tao, C. Song, C. Mao, L. Dong and J. Zhu, J. Phys. Chem. B, 110(32), 15791 (2006). https://doi.org/10.1021/jp060527j
  13. A. Huignard, V. Buissette, G. Laurent, T. Gacoin and J. P. Boilot, Chem. Mater., 14(5), 2264 (2002). https://doi.org/10.1021/cm011263a
  14. K. Y. Jung, C. H. Lee and Y. C. Kang, Mater. Lett., 59(19- 20), 2451 (2005). https://doi.org/10.1016/j.matlet.2005.03.017
  15. J. H. Shin, S. W. Choi, S. H. Hong, S. J. Kwon, S. Y. Seo, H. S. Kim, Y. H. Song and D. H. Yoon, J. Alloy. Comp., 509, 4331 (2011). https://doi.org/10.1016/j.jallcom.2011.01.060
  16. L. Wang and Y. Wang, J. Lumin., 122-123, 921 (2007). https://doi.org/10.1016/j.jlumin.2006.01.327
  17. A. Lakshmanan, Luminescence and display phosphors: phenomena and application, p.24-25, Nova Science publishers, Inc., New York, USA (2008).
  18. M. Yu, J. Lin and J. Fang, Chem. Mater., 17, 1783 (2005).
  19. Y. Zuo, W. Ling and Y. Wang, J. Lumin., 132, 61 (2012). https://doi.org/10.1016/j.jlumin.2011.07.012
  20. W. J. Park, Y. H. Song, J. W. Moon and D. H. Yoon, J. Kor. Cryst. Growth Cryst. Tech., 18(4), 169 (2008) (in Korean).
  21. K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas and N. H. Snow, Anal. Chem., 71, 947 (1999). https://doi.org/10.1021/ac981050d
  22. S. Choi, B. Y. Park and H. K. Jung, J. Lumin., 131, 1460 (2011). https://doi.org/10.1016/j.jlumin.2011.03.043

Cited by

  1. Phosphors vol.22, pp.9, 2012, https://doi.org/10.3740/MRSK.2012.22.9.489
  2. (RE= Sm, Eu) Phosphors vol.27, pp.7, 2014, https://doi.org/10.4313/JKEM.2014.27.7.477