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Abstract

In animal tumorigenicity data, tumor onsets occur at several sites and onset times cannot be exactly ob-

served. Instead, the existence of tumors is examined only at death time or sacrifice time of the animal. Such

an incomplete data structure makes it difficult to investigate the effect of treatment on tumor onset times;

in addition, such dependence should be considered when censoring due to death is related with tumor onset.

A bivariate frailty effect is incorporated to model bivariate tumor onsets and to connect death with tumor.

For the inference of parameters, EM algorithm is applied and a real NTP(National Toxicology Program)

dataset is analyzed as an illustrative example.
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1. Introduction

Current status data occur when subject is not under continuous examinations, instead, the occur-

rence of event is checked at only one examination time. This kind of data is also known as case I

interval-censored data and was reviewed in detail by Sun (2006). In this paper, our interest is to

consider bivariate current status data with informative censoring. For example, in a carcinogenicity

study, tumors can occur at two different sites. However, instead of exact tumor onset times, the

available data for the ith subject are composed of (Ci, Di,∆i1,∆i2), where Ci denotes a censor-

ing time at the death or sacrifice time and Di has a value one for a natural death and zero for

sacrifice. ∆i1 and ∆i2 are indicator variables showing that tumor 1 and tumor 2 are found at Ci,

respectively. Most studies assume that the censoring time is independent of the event occurrence

time. For example, when the censoring time is predetermined, this assumption is valid. In the
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tumorigenicity study, however, the censoring can happen at death and this requires investigation

of the relation between death occurrence and tumor onset. As related studies, a three-state model

with no tumor, tumor and death state has been applied to univariate current status data (Lindsey

and Ryan, 1994; French and Ibrahim, 2002; Kim et al., 2011). They constructed a likelihood for

four possible outcomes depending on tumor onset and death. Dunson and Dinse (2002) considered

informative censoring for multivariate current status data and developed a MCMC method under

conditional independence using frailty effect. Chen et al. (2009) and Hens et al. (2009) applied

a univariate frailty effect for multivariate current status data without death. In this paper, we

extend the three state model to analyze bivariate current status data with informative censoring

and assume the occurrence of two events are conditionally independent given a bivariate frailty.

We introduce notations and related likelihood in Section 2 and an estimation procedure is developed

in detail in Section 3. The suggested method is applied to a real dataset in Section 4 and related

comments are remarked in Section 5.

2. Data and Likelihood

We extend a three state model into a multi-state model in order to model bivariate current status

data with informative censoring. For the i (= 1, . . . , n)th subject, let Xij denote the j (= 1, 2)th

unobservable tumor occurrence time and ∆ij = I(Xij ≤ Ci) indicates whether the j
th tumor occurs

before censoring time. Hereafter, lowercase letters are applied for observed data, (ci, di, δi1, δi2, zi).

There are two features to consider for modeling in our study. The first one is the association

between tumor onsets. Even though their exact onset times are unobservable, their occurrences

are considered in the context of multivariate survival times. Therefore, a bivariate frailty effect is

adopted to model such association. That is, given a bivariate frailty ui = (ui1, ui2), the conditional

independence between two tumor occurrences is assumed. With covariate vector zi(r × 1), the

hazard functions of tumor 1 and tumor 2 are defined, respectively,

αi1(s|ui1) = α0(s)exp
(
z′iβ1 + ui1

)
, αi2(s|ui2) = α0(s)exp

(
z′iβ2 + ui2

)
,

where ui = (ui1, ui2) is assumed to follow a bivariate normal distribution with zero means and the

following variance-covariance,

Σ =

(
σ2
1 , σ12

σ12, σ2
2

)
.

The second feature of this data is the relation between tumor onset and death occurrence. In the

presence of tumors, we assume that tumor 1 and tumor 2 have different lethality and the hazards

of death is denoted by

λi1(t|ui1) = λ0(t)exp
(
z′iγ1 + ui1

)
, λi2(t|ui2) = λ0(t)exp

(
z′iγ2 + ui2

)
.

Also, it is still possible for death to occur without tumors and corresponding hazards are given as

λi3(t) = λ0(t)exp
(
z′iγ3

)
.
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Table 2.1. Likelihood for (δ1, δ2, d)

(δ1, δ2, d) Likelihood

(0, 0, 0) + (0, 0, 1)
[
e−Λ3(0,c)−A1(0,c)−A2(0,c)

](1−δ1)(1−δ2) λ3(c)(1−δ1)(1−δ2)d

(1, 0, 0) + (1, 0, 1)
[
e−Λ3(0,c)−A1(0,x1)−A2(0,c)α1(x1)e−Λ1(x1,c)

]δ1(1−δ2) λ1(c)δ1(1−δ2)d

(0, 1, 0) + (0, 1, 1)
[
e−Λ3(0,c)−A1(0,c)−A2(0,x2)α2(x2)e−Λ2(x2,c)

](1−δ1)δ2 λ2(c)(1−δ1)δ2d

(1, 1, 0) + (1, 1, 1)
[
e−Λ3(0,c)−A1(0,x1)−A2(0,x2)α1(x1)α2(x2)e−Λ1(x1,c)−Λ2(x2,c)

]δ1δ2 (λ1(c)λ2(c))δ1δ2d

For the convenience, the subject script is dropped hereafter. A likelihood is composed of four parts

depending on tumor existence and death occurrence shown in Table 2.1. A1, A2,Λ1,Λ2 and Λ3 are

the cumulative hazard functions of α1, α2, λ1, λ2 and λ3, respectively. Here, the cumulative hazard

functions are defined as

Ak(s, t) =

∫ t

s

αk(v|uk)dv, Λk(s, t) =

∫ t

s

λk(w|uk)dw, k = 1, 2, and Λ3(s, t) =

∫ t

s

λ3(w)dw.

Then a likelihood is written as,

Lc =

n∏
i=1

e−Λ3(0,ci)λ3(ci)
(1−δi1)(1−δi2)die−A1(0,ci)(1−δi1)e−A2(0,ci)(1−δi2)

×
{
e−A1(0,xi1)−Λ1(xi1,ci)α1(xi1)

}δi1
{
e−A2(0,xi2)−Λ2(xi2,ci)α2(xi2)

}δi2
λ1(ci)

δi1diλ2(ci)
δi2di .

For easy and robust estimation of baseline functions, we adopt a piecewise constant hazard function.

Let 0 = s0 < sl < · · · < sJ denote pre-specified breakpoints resulting in the following intervals,

Ij = (sj−1, sj ], j = 1, . . . , J which have constant intensities. For a baseline tumor onset hazard

α0(t), define,

α0(t) = α̃l, t ∈ (sl−1, sl].

Similar definitions are assigned for baseline death hazard λ̃ = {λ̃1, . . . , λ̃J} corresponding λ0(t).

Thus, (α̃, λ̃) = (α̃1, . . . , α̃J , λ̃1, . . . , λ̃J) are unknown baseline intensity parameters. Let θ = (λ̃, α̃,

β, γ,Σ) be the parameters of interest. Then a complete data likelihood is redefined as

L(θ) =

J∏
j=1

λ̃
NBj+aj+bj
j α̃

B1j+B2j
j

× exp

(
−λ̃j

n∑
i=1

(
TNBT
ij ez

′
iγ3 + TB1

ij ez
′
iγ1+ui1 + TB2

ij ez
′
iγ2+ui2

)
−α̃j

n∑
i=1

(
TNB1
ij ez

′
iβ1+ui1 + TNB2

ij ez
′
iβ2+ui2

))

× exp

{
n∑

i=1

z′i [(1− δ1i)(1− δ2i)diγ3 + δ1iβ1 + δ2iβ2 + γ1δ1idi + γ2δ2idi]

+

n∑
i=1

[δ1i(1 + di)ui1 + δ2i(1 + di)ui2]

}
,

where (NBj , aj , bj , B1j , B2j , T
NBT
ij , TB1

ij , TB2
ij , TNB1

ij , TNB2
ij ) are defined as,
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NBj : the number of subjects dying without both tumors at Ij ,

aj , bj : the number of subjects dying with the tumor 1 and tumor 2 at Ij ,

B1j , B2j : the numbers of tumor 1 and tumor 2 onsets at Ij ,

TNBT
ij : the time the ith subject spends without both tumors at Ij ,

TB1
ij , TB2

ij : the times the ith subject spends with tumor 1 and tumor 2 at Ij , respectively,

TNB1
ij , TNB2

ij : the times the ith subject spends without tumor 1 and tumor 2 at Ij , respectively,

where NBj , aj , bj can be calculated while B1j , B2j , T
NBT
ij , TB1

ij , TNB1
ij and TNB2

ij are uncalculable

owing to unobservable tumor onset times.

3. EM Algorithm

We apply the EM algorithm (Dempster et al., 1977) to estimate unknown parameters. There are

two types of missing information caused by both frailty effects and current status data. Therefore, a

two-stage procedure is applied in order to recover unknown quantities. In the first stage, the frailty

effects are assumed to be known and then unknown quantities related with unobservable tumor

onset times are estimated using the following conditional expectations with Oi = (δi1, δi2, ci, zi)

(Lindsey and Ryan, 1994),

E
(
B1j |Oi, θ̂

)
=

n∑
i=1

δ1ip1j(ci),

E
(
B2j |Oi, θ̂

)
=

n∑
i=1

δ2ip2j(ci),

E
(
TNB1
ij |Oi, θ̂

)
=


I(ci ∈ Ij)(ci − sj−1) +

∑
I(ci∈Ik,k>j)

(sj − sj−1), δ1i ̸= 1,

I(ci ∈ Ij)(Ej(x1|ci)− sj−1)p1j(ci) +
∑

I(ci∈Ik,k>j)

(sj − sj−1)p1j(ci), δ1i = 1,

E
(
TNB2
ij |Oi, θ̂

)
=


I(ci ∈ Ij)(ci − sj−1) +

∑
I(ci∈Ik,k>j)

(sj − sj−1), δ2i ̸= 1,

I(ci ∈ Ij)(Ej(x2|ci)− sj−1)p2j(ci) +
∑

I(ci∈Ik,k>j)

(sj − sj−1)p2j(ci), δ2i = 1,

where p1j(ci) is the conditional probability of the ith subject acquired tumor 1 in Ij , given it died

or sacrificed at ci.

p1j(ci) =



∫ ci
sj−1

q(x, ci)dx∫ ci
0
q(x, ci)dx

, ci ∈ Ij ,∫ sj
sj−1

q(x, ci)dx∫ ci
0
q(x, ci)dx

, sj < ti,

Ej(x1|ci) =



∫ ci
sj−1

xq(x, ci)dx∫ sj
sj−1

q(x, ci)dx
, ci ∈ Ij ,∫ sj

sj−1
xq(x, ci)dx∫ ci

sj−1
q(x, ci)dx

, sj < ti,

where q(x1, ci) = α1(x1)exp[−
∫ x1

0
(α1(s) + λ3(s))ds]λ1(ci)exp[−

∫ ci
x1
λ1(s)ds]. For tumor 2, p2j

and Ej(x2|ci) are defined similarly. Therefore, TB1
ij = T tot

ij − TNB1
ij , TB2

ij = T tot
ij − TNB2

ij and
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TNBT
ij = T tot

ij −max(TB1
ij , TB2

ij ). Once the missing values are replaced by the expected values, the

next stage is to calculate the functions of the frailties based on the following conditional probabilities,

E(h(ui)|Oi, θ) =

∫
h(ui)Li(θ)f(ui|Σ)dui∫
Li(θ)f(ui|Σ)dui

,

where

Li(θ) =

J∏
j=1

λ̃
di(1−δ1i)(1−δ2i)I(ci∈Sj)+diδ1iI(ci∈Sj)+diδ2iI(ci∈sj)
j × α̃δ1ip1j(ci)+δ2ip2j(ci)

j

× exp
[
−λ̃j

(
TNBT
ij eziγ3 + TB1

ij eziγ1+ui1 + TB2
ij eziγ2+ui2

)
− α̃

(
TNB1
ij eziβ1+ui1 + TNB2

ij eziβ2+ui2

)]
× exp

{
zi[(1−δ1i)(1−δ2i)diγ3+ δ1iβ1+ δ2iβ2+ δ1idiγ1+ δ2idiγ2]+ δ1i(1+ di)ui1+ δ2i(1+ di)ui2

}
.

The calculation of integration can be done by Gaussian quadrature techniques (Abramowitz and

Stegun, 1972). In M-step to obtain updated estimates, we maximize the following log likelihood

replaced with the expectations of quantities calculated in E-step,

l(θ) =
J∑

j=1

[
(NBj + aj + bj)logλ̃j + (B1j +B2j)logα̃j

− λ̃j

n∑
i=1

TNBT
ij eZ

′
iγ3+ TB1

ij eziγ1+ui1+ TB2
ij ez

′
iγ2+ui2− α̃j

n∑
i=1

(
TNB1
ij eziβ1+ui1 + TNB2

ij ez
′
iβ2+ui2

)]

+

n∑
i=1

[
(1−δ1i)(1−δ2i)diγ3+ δ1iβ1+ δ2iβ2+ δ1idiγ1+ δ2idiγ2+ δ1i(1+ di)ui1+ δ2i(1+ di)ui2

]
.

We use a Newton-Raphson method to estimate parameters θ. The first and second derivatives are

defined as follows, j = 1, . . . , J ,

∂l

∂α̃j
=
B1j +B2j

α̃j
−

n∑
i=1

(
TNB1
ij eziβ1+ui1 + TNB2

ij eziβ2+ui2

)
,

∂l

∂λ̃j

=
NBj + aj + bj

λ̃j

−
n∑

i=1

(
TNBT
ij ez

′
iγ3 + TB1

ij ez
′
iγ1+ui1 + TB2

ij eziγ2+ui2

)
,

∂l

∂β1
=

n∑
i=1

zi

[
−

J∑
j=1

α̃jT
NB1
ij eziβ1+ui1 + δ1i

]
,

∂l

∂β2
=

n∑
i=1

zi

[
−

J∑
j=1

α̃jT
NB2
ij eziβ2+ui2 + δ2i

]
,

∂l

∂γ1
=

n∑
i=1

zi

[
−

J∑
j=1

λ̃jT
B1
ij eziγ1+ui1 + δ1idi

]
,

∂l

∂γ2
=

n∑
i=1

zi

[
−

J∑
j=1

λ̃jT
B2
ij eziγ2+ui2 + δ2idi

]
,

∂l

∂γ3
=

n∑
i=1

zi

[
−

J∑
j=1

λ̃jT
NBT
ij eziγ3 + (1− δ1i)(1− δ2i)di

]
,
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Table 4.1. Summary of tumor occurrence of 100 male rats in the NTP data

Treat No Tumor Adrenal Tumor Lung Tumor Both Tumor

Control 29 19 2 0

High dose 31 13 1 3

and the second derivatives are

∂2l

∂α̃2
j

= −B1j +B2j
α̃2
j

,
∂2l

∂λ̃2
j

= −NBj + aj + bj

λ̃2
j

,

∂2l

∂α̃j∂β1
= −

n∑
i=1

zi
(
TNB1
ij ez

′
iβ1+ui1

)
,

∂2l

∂α̃j∂β2
= −

n∑
i=1

zi
(
TNB2
ij ez

′
iβ2+ui2

)
,

∂2l

∂λ̃j∂γ1
= −

n∑
i=1

zi
(
TB1
ij ez

′
iγ1+ui1

)
,

∂2l

∂λ̃j∂γ2
= −

n∑
i=1

zi
(
TB2
ij ez

′
iγ2+ui2

)
,

∂2l

∂λ̃j∂γ3
= −

n∑
i=1

zi
(
TNBT
ij ez

′
iγ3

)
,

∂2l

∂β2
1

= −
n∑

i=1

[
J∑

j=1

α̃jT
NB1
ij ez

′
iβ1+ui1

]
ziz
′
i,

∂2l

∂β2
2

= −
n∑

i=1

[
J∑

j=1

α̃jT
NB2
ij ez

′
iβ2+ui2

]
ziz
′
i,

∂2l

∂γ2
1

= −
n∑

i=1

[
J∑

j=1

λ̃jT
B1
ij ez

′
iγ1+ui1

]
ziz
′
i,

∂2l

∂γ2
2

= −
n∑

i=1

[
J∑

j=1

λ̃jT
B2
ij ez

′
iγ2+ui2

]
ziz
′
i,

∂2l

∂γ2
3

= −
n∑

i=1

[
J∑

j=1

λ̃jT
NBT
ij ez

′
iγ3

]
ziz
′
i.

For the variance-covariance estimation of the estimator θ̂, the inverse of the observed information

matrix, I(θ̂), is used. The estimation includes the calculation of piece-wise baseline parameters

whose length can be increased with sample size. To find appropriate number of pieces and to

determine break points, several evaluation criterions can be used. However, before applying these

procedures, it is more crucial to carefully investigate dataset to find meaningful numbers of pieces

and break points related to the research.

4. Data Analysis

In this section, we apply the suggested method to data from a NTP(National Toxicology Program),

2 year rodent carcinogenicity study of chloroprene (Dunson and Dinse, 2002). The occurrence of

tumors found in several sites was investigated at the death time or sacrifice time. The dataset

composed of 100 mice. A total of 50 mice were in the control group and 50 were exposed to

chloroprene at concentration of 80 ppm by inhalation 6 hours per day. The main interest is to

assess the effect of treatment on tumor incidence and death. Furthermore, tumor incidences at

two difference sites may have inter-correlation. Table 4.1 shows the distribution of tumors by

treatment. The first death with tumor occurs at 20 week and there is only one sacrifice time at

25 week. Denote zi = 1 as a high dose group and 0 otherwise. Table 4.2 shows the estimated

coefficients and standard errors obtained from the suggested method with several different break
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Table 4.2. Analysis of NTP data with three different numbers of pieces

J = 3 J = 4 J = 5

Tumor incidence

Adrenal 0.723(0.234) 0.800(0.236) 0.768(0.236)

Lung −0.356(0.408) −0.443(0.408) −0.404(0.407)
Death

Adrenal 1.105(0.267) 0.894(0.267) 0.879(0.268)

Lung 1.095(0.501) 0.944(0.500) 1.008(0.500)

No tumor 0.063(0.178) 0.067(0.179) 0.079(0.180)

Random effect = (σ2
1 , σ12, σ

2
2)

(0.75, 0.52, 0.42) (0.53, 0.39, 0.35) (0.16, 0.09, 0.09)

log-likelihood −311.052 −278.021 −301.677
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Figure 4.1. Estimated baseline tumor hazard functions

points (J = 3, 4, 5). Based on log-likelihood values, J = 4 seems to be appropriate. With four time

points (J = 4, s1 = 20 < 22 < 24 < 25 = s4) for piecewise baseline hazards, several covariate effects

and frailty effects are estimated. β̂1 = 0.800 (p-value = 0.0006) indicates that a treatment has a

significant effect on adrenal tumor incidence while β̂2 = −0.443 (p-value = 0.278) shows a treatment

has no significant effect on lung tumor incidence. From the estimated γ̂s values related with death,

treatment has significant effects for deaths of patients with tumors(γ̂1 = 0.894, γ̂2 = 0.944). That is,

mice with high dose tend to get a higher risk on death after the tumor onsets. However, treatment

has no significant effect on death without tumors(γ̂3 = 0.067). Figure 4.1 and Figure 4.2 show the

estimated baseline tumor hazards and death hazards with J = 4. Also the estimated covariance

σ̂12 = 0.39 shows a positive correlation between Adrenal and lung tumors.

5. Conclusion

In this study, an EM algorithm is applied to investigate covariate effects at bivariate current status

with informative censoring. Using a bivariate frailty, the associations between two tumor onsets as
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Figure 4.2. Estimated baseline death hazard functions

well as between tumor onset and death are considered. However, the present method still needs

future research. One future work is to model transition between tumors. We assume that two

tumors occur independently given a bivariate frailty. Bivariate current status data is unavailable

for the order of occurrence as well as the times. In a paper with similar interest, Cook et al. (2008)

considered bivariate interval-censored data and applied a Markov process in order to connect two

processes. In their work, overlapping intervals of two interval-censored data complicate the estima-

tion procedure. They assigned appropriate weights on regions composed of interval censored times

in order to derive estimating equations. However, there are two problems to apply their methods

to our dataset; less information owing to a common censoring time and the possibility of infor-

mative censoring. Therefore, a more complicated estimation procedure is required for appropriate

estimates. In future work, more extended multi-state model would be incorporated to model two

events simultaneously and connect them. As the referees pointed out, future work would develop

a simulation scheme and check the performance of the suggested method under several conditions.

In particular, these enable us to give guidelines to decide the suitable number of pieces. We will

discuss this problem in future work.
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