DOI QR코드

DOI QR Code

주조유동의 정확도 개선을 위한 수치기법 연구

Numerical Method for Improving the Accuracy of Molten Metal Flow

  • 투고 : 2011.04.18
  • 심사 : 2012.01.09
  • 발행 : 2012.03.01

초록

주조 유동 해석 분야에서 형상 고정 격자계(body-fitted coordinate; BFC)의 적용은 양질의 해석결과를 얻을 수 있음에도 불구하고 격자 생성의 어려움과 효율성으로 인해 많이 사용되지 않고 있다. 반면에 직교 격자계(Cartesian coordinate)는 상대적으로 격자 생성이 쉽고 빠르기 때문에 주조 공정에서 주로 사용되어 왔으나 이 역시 형상을 제대로 표현하지 못함으로써 발생하는 문제들로 인해 올바른 해석 결과를 얻을 수가 없다. 본 연구에서는 PCT(Partial Cell Treatment)를 기반으로 하는 Cut Cell 방법을 직교 격자계에 적용함으로써 이 격자계의 장점은 유지하면서도 정확한 유동 해석 결과를 얻을 수 있었다. Cut Cell 방법으로 간단한 형상의 테스트와 실제 주조 제품에 대한 적용을 해보았다.

The Cartesian grid system has generally been used in casting simulations, even though it does not represent sloped and curved surfaces very well. These distorted boundaries cause several problems, and special treatment is necessary to resolve them. A cut cell method on a Cartesian grid has been developed for the simulation of threedimensional mold filling. Cut cells at a cast/mold interface are generated on Cartesian grids, and the governing equations are computed using the volume and areas of the cast at the cut cells. In this paper, we propose a new method based on the partial cell treatment (PCT) that can consider the cutting cells which are cut by the cast and the mold. This method provides a better representation of the surface geometry, and will be used in the computation of velocities that are defined on the cell boundaries in the Cartesian gird system. Various test examples for several casting process are computed and validated.

키워드

참고문헌

  1. Delanaye, M., Patel, A., Leonard, B. and Hirsch, C., 2001, "A Preview Approach to Force Control of Robot Manipulators," ECCOMAS CFD 2001, Institution of Mathematics and its application, Southern-on-Sea, UK.
  2. Ingram, D. M., Causon, D. M. and Mingham, C. G., 2003, "Developments in Cartesian Cut Cell Methods," Mathematics and Computers in Simulation, Vol. 61, pp.561-572. https://doi.org/10.1016/S0378-4754(02)00107-6
  3. Hong, C. P., Lee, S. Y. and Song, K., 2001, " Development of a New Simulation Method of Mold Filling Based on a Body-Fitted Coordinate System," ISIJ International, Vol. 41, No.9, pp.999-1005. https://doi.org/10.2355/isijinternational.41.999
  4. Lee, S. Y., Nam, N. H., Roh, D. H., Kim, S. B. and Hong, C. P., 2006, " Mold Filling Simulation Based on the Body Fitted Coordinate System in an Unstructured Grid System," 11th Int. Conf. on Modeling of Casting, Welding and Advanced Solidification Processes, 2006, Opio, France, pp. 95-102.
  5. Tucker, P. G. and Pan, Z., 2000, " A Cartesian Cut Cell Method for Incompressible Viscous Flow," Applied Mathematical Modeling, Vol. 24, pp.591-606. https://doi.org/10.1016/S0307-904X(00)00005-6
  6. Lin, P., 2007, "A Fixed-Grid Model for Simulation of a Moving Body in Free Surface Flows," Computers & Fluids, Vol. 36, pp.549-561. https://doi.org/10.1016/j.compfluid.2006.03.004
  7. Lorensen, W.E. and Clien, H.E., 1987, "Marching Cubes: A High Resolution 3D Surface Construction Algorithm", Int. Conf. Computer Graphics & Interactive Technique, pp.163-169.
  8. Nicholas, B.D., Hirt, C.W. and Hotchkiss, R.S., 1980, "SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries," LANL Tech. Report.