DOI QR코드

DOI QR Code

Modeling of Flame Acceleration Considering Complex Confinement Effects in Combustible Gas Mixture

가연성 기체 혼합물에서 복잡한 구조에 따른 화염 가속 모델링

  • Gwak, Min-Cheol (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Yoh, Jai-Ick (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 곽민철 (서울대학교 기계항공공학부) ;
  • 여재익 (서울대학교 기계항공공학부)
  • Received : 2011.10.17
  • Accepted : 2011.12.14
  • Published : 2012.03.01

Abstract

This paper presents a numerical investigation of the deflagration-to-detonation transition (DDT) of flame acceleration by a shock wave filled with an ethylene/air mixture as the combustible gas, considering geometrical changes by using obstacles and bent tubes. The model used consists of the reactive compressible Navier-Stokes equations and the ghost fluid method (GFM) for complex boundary treatment. Simulations with a variety of bent tubes with obstacles show the generation of hot spots through flame and strong shock-wave interactions, and restrained or accelerated flame propagation due to geometrical effects. In addition, the simulation results show that the DDT occurs with a nearly constant chemical heat-release rate of 20 MJ/($g{\bullet}s$) in our numerical setup. Furthermore, the DDT triggering time can be delayed by the absence of unreacted material together with insufficient pressures and temperatures induced by different flame shapes, although hot spots are formed in the same positions.

본 연구는 가연성 기체로서 에틸렌-공기 혼합물로 채워져 있는 관에서 장애물과 굽은 관에 의한 지형적 효과에 따라 변화하는 충격파와 화염의 상호 작용, 화염 가속, 연소폭발천이 현상을 수치적으로 살펴보았다. 여기서 사용되는 모델은 지배방정식으로 Navier-Stokes 방정식과 경계조건 처리 방법으로 ghost fluid 기법을 사용하였으며 지형적 영향을 달리한 여러 모델링을 통하여 화염과 강한 충격파의 충돌에 의한 열점 생성과 화염 전파의 지연 혹은 가속 현상을 확인하였다. 추가적으로 평균 화학적 에너지 발생률이 대략 20 MJ/($g{\bullet}s$)에서 폭굉으로 천이한다는 사실을 확인하였다. 그리고 동일 위치 열점 생성에도 불구하고 폭굉의 발생 시기가 반응물의 부재와 화염면 전방의 온도와 압력 차에 의해 지연될 수 있음을 확인하였다.

Keywords

References

  1. Kim. D. H. and Yoh. J. J., 2009, "Predictive Model of Onset of Pipe Failure Due to a Detonation of Hydrogen-Air and Hydrocarbon-Air Mixtures," International Journal of Hydrogen Energy, Vol. 34, pp. 1613-1619. https://doi.org/10.1016/j.ijhydene.2008.11.081
  2. Gwak. M. C. and Yoh. J. J., 2011, "Gaseous Deflagration-to-Detonation Impact Simulation on Copper-Based Furnace Injector," Combustion Explosion and Shock Waves. https://doi.org/10.1134/S0010508211040095
  3. Zel'dovich, YA. B., 1980, "Regime Classification of Exothermic Reaction with Nonuniform Initial Condition," Combustion and Flame, Vol. 39, pp. 211-214. https://doi.org/10.1016/0010-2180(80)90017-6
  4. Oran. E. S. and Gamezo. V. N., 2007, "Origines of the Deflagration-to-Detonation Transition in Gas-Phase Combustion," Combustion and Flame, Vol. 148, pp. 4-47. https://doi.org/10.1016/j.combustflame.2006.07.010
  5. Liberman, M. A., Ivanov, M. F., Kiverin, A. D., Kuznetsov, M. S. and Rakhimova, T. V., 2010, "Deflagration-to-Detonation Transition in Highly Reactive Combustible Mixtures," Acta Astronautica, Vol. 67, pp. 688-701. https://doi.org/10.1016/j.actaastro.2010.05.024
  6. Ciccarelli, G., Johansen, C. T. and Parravani, M., 2010, "The Role of Shock-Flame Interactions on Flame Acceleration in an Obstacle Laden Channel," Combustion and Flame, Vol. 157, pp. 2125-2136. https://doi.org/10.1016/j.combustflame.2010.05.003
  7. Gamezo, V. N., Ogawa, T. and Oran, E. S., 2007, "Numerical Simulations of Flame Propagation and DDT in Obstructed Channels Filled with Hydrogen-Air Mixture," Proceedings of the Combustion Institute, Vol. 31, pp. 2463-2471. https://doi.org/10.1016/j.proci.2006.07.220
  8. Frolov, S. M., Aksenov, V. S. and Shamshin, I. O., 2007, "Shock Wave and Detonation Propagation Through U-Bend Tubes," Proceedings of the Combustion Institute, vol. 31, pp. 2421-2428. https://doi.org/10.1016/j.proci.2006.07.197
  9. Otsuka, S. Suzuki, M. and Yamamoto, M., 2010, "Numerical Investigation on Detonation Wave Through U-Bend," Journal of Thermal Science, Vol. 19, pp. 540-544. https://doi.org/10.1007/s11630-010-0421-x
  10. Liu, X. D. and Osher, S., 1998, "Convex ENO High Order Multi-Dimensional Schemes Without Field by Field Decomposition or Staggered Grids," Journal of Computational Physics, Vol. 141, pp. 1-27. https://doi.org/10.1006/jcph.1998.5900
  11. James, E. A. J., Gas dynamics, 3rded., Pearson Prentice Hall: 2006, pp. 107-123.
  12. Thomas, G., Bambrey. R., and Brown. C., 2001, "Experimental Observations of Flame Acceleration and Transition to Detonation Following Shock-Flame Interaction," Combust. Theory and Modelling, Vol. 5, pp. 573-594. https://doi.org/10.1088/1364-7830/5/4/304
  13. Liu, T. G., Khoo, B. C. and Yeo, K. S., 2003, "Ghost Fluid Method for Strong Shock Impacting on Material Interface," Journal of Computation and Physics, Vol. 190, pp. 651-681. https://doi.org/10.1016/S0021-9991(03)00301-2