DOI QR코드

DOI QR Code

Performance Assessment of Refrigerant Vapor-Pressure Equations with Two Adjustable Parameters

두 개의 가변 변수가 있는 냉매 증기압 상관식의 성능 평가

  • 박경근 (국민대학교 기계시스템공학부)
  • Received : 2011.10.19
  • Published : 2012.02.10

Abstract

Performance of various temperature-dependent vapor-pressure equations with two adjustable parameters is assessed. These are Antoine, Miller, Zia-Thodos, Mejbri-Bellagi and other 10 equations. The equations are fitted to correlate the data from NIST Chemistry WebBook for 43 pure substance refrigerants from the critical point to the triple point. It was found that the Mejbri-Bellagi equation yields the lowest average absolute deviation of 0.37% compared with that of 0.58% of the Miller equation which is known to give better fit to experimental data than the Antoine equation(1.42%) does.

Keywords

References

  1. Antoine, C., 1888, Thermodynamics, vapor pressure: A new relation between vapor pressure and temperature, Comp. Rend., Vol. 107, p. 681, 836 and 1143-1145 as appear in Ref. 16.
  2. Schmidt, 1797 as appear in Ref. 30.
  3. Young, 1807 as appear in Ref. 30.
  4. Rankine, W. J. M., 1851, On the centrifugal theory of elasticity, as applied to gases and vapors, Phil. Mag. Vol. 2, p. 509 as appear in Ref. 31.
  5. Kirchhoff, G., 1858, On the tension of the vapor from mixtures of water and sulfuric acid (in German), Ann. Phys., Vol. 104, p. 612 as appear in Ref. 31.
  6. Unwin, W. C., 1886, Phil. Mag., Vol. 21, p. 299 as appear in Ref. 31. https://doi.org/10.1080/14786448608627851
  7. Carbonelli, C. E., 1919, Gazz. chim. ital., Vol. 49, pp. 151-153 as appear in Ref. 16.
  8. Erpenbeck, J. J. and Miller, D. G., 1959, Semiempirical vapor pressure relation based on Dieterici's equation of state, Ind. Eng. Chem., Vol. 51, pp. 329-331. https://doi.org/10.1021/ie51394a049
  9. Miller, D. G., 1964, Derivation of two equations for the estimation of vapor pressures, J. Phys. Chem., Vol. 68, pp. 1399-1408. https://doi.org/10.1021/j100788a021
  10. Miller, D. G., 1965, A simple reduced equation for the estimation of vapor pressures, J. Phys. Chem., Vol. 69, pp. 3209-3212. https://doi.org/10.1021/j100893a527
  11. Hall, R. C., 1964, A new basic form for vapor pressure equations, Can. J. Chem. Eng., Vol. 42, pp. 152-154. https://doi.org/10.1002/cjce.5450420404
  12. Zia, T. and Thodos, G., 1974, A generalized vapor pressure equation for hydrocarbons, Can. J. Chem. Eng., Vol. 52, pp. 630-635. https://doi.org/10.1002/cjce.5450520514
  13. Nath, J., Das, S. S., and Yadava, M. L., 1976, On the choice of acentric factor, Ind. Eng. Chem. Fundam., Vol. 15, pp. 223-225. https://doi.org/10.1021/i160059a014
  14. Mejbri, K. H. and Bellagi, A., 2005, Corresponding states correlation for the saturated vapor pressure of pure fluids, Thermochimica Acta, Vol. 436, pp. 140-149. https://doi.org/10.1016/j.tca.2005.06.040
  15. Reid, R. C., Prausnitz, J. M., and Poling, B. E., 1987, The Properties of Gases and Liquids, McGraw-Hill, New York, p. 215.
  16. Thomson, G. W. M., 1946, The Antoine equation for vapor pressure data, Chemical Reviews, ACS Publications, pp. 1-39.
  17. Riedel, L., 1954, A new universal vapor pressure formula (in German), Chemie Ingenieur Technik, Vol. 26, pp. 83-89. https://doi.org/10.1002/cite.330260206
  18. Xiang, H. W. and Tan, L. C., 1994, A new vapor- pressure equation, Int. J. Thermo-phys., Vol. 15, pp. 711-727. https://doi.org/10.1007/BF01563795
  19. Park, K. K., 2010, A differential equation for vapor pressure as a function of temperature, Fluid Phase Equilib., Vol. 290, pp. 158-165. https://doi.org/10.1016/j.fluid.2009.10.016
  20. Wagner, W., 1973, New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations, Cryogenics, Vol. 13, pp. 470- 482. https://doi.org/10.1016/0011-2275(73)90003-9
  21. Oscarson, J. L., Rowley, R. L., Wilding, W. V., and Izatt, R. M., 2008, Industrial need for accurate thermophysical data and for reliable prediction methods, J. Therm. Anal. Cal., Vol. 92, pp. 465-470. https://doi.org/10.1007/s10973-007-8972-0
  22. Lemmon, E. W., McLinden, M. O. and Friend, D. G., Thermophysical properties of fluid systems, in:Linstrom, P. J. and Mallard, W. G. Eds., 2005, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD 20899(http://webbook.nist.gov).
  23. Fisher, C. H., 2003, Equations for correlating vapor pressures with temperature, JAOCS, Vol. 80, pp. 941-944. https://doi.org/10.1007/s11746-003-0793-y
  24. Henglein, F. A., 1921, Z. Physik. Chem., Vol. 98, p. 1 as appear in Ref. 31.
  25. McGarry, J., 1983, Correlation and prediction of the vapor pressures of pure liquids over large pressure ranges, Ind. Eng. Chem. Process Des. Dev., Vol. 22, pp. 313-322. https://doi.org/10.1021/i200021a023
  26. Mohammadzadeh, S. and Zahedi, G., 2008, A new vapor pressure equation for pure substances, Korean J. Chem. Eng., Vol. 25, pp. 1514-1517. https://doi.org/10.1007/s11814-008-0249-1
  27. Park, K. K., 2010, On an old basic form for vapor pressure equations, Korean J. Chem. Eng., Vol. 27, pp. 1284-1285. https://doi.org/10.1007/s11814-010-0180-0
  28. Garbow, B. S., Hillstrom, K. E., and More, J. J., 1980, MINPACK subroutine LMDIF1, Argonne National Lab.
  29. Moler, C., 1978, LINPACK, University of New Mexico, Argonne National Lab.
  30. Walas, S. M., 1985, Phase Equilibrium in Chemical Engineering, Butterworth-Heinemann, Boston, USA, p. 11.
  31. Wilsak, R. A. and Thodos, G., 1984, Critical assessment of four vapor pressure functions over the complete vapor-liquid coexistence region, Ind. Eng. Chem. Fundam., Vol. 23, pp. 75-82. https://doi.org/10.1021/i100013a014