DOI QR코드

DOI QR Code

Effects of Crop Rotations on Potato Yield, Soil Chemical and Microbiological Properties in Organic Farming System

윤작이 감자 수량, 토양 화학성 및 미생물 활성에 미치는 영향

  • 김유경 (제주특별자치도 농업기술원 친환경연구과) ;
  • 강호준 (제주특별자치도 농업기술원 친환경연구과) ;
  • 양상호 (제주특별자치도 농업기술원 친환경연구과) ;
  • 오한준 (제주특별자치도 농업기술원 친환경연구과) ;
  • 이신찬 (제주특별자치도 농업기술원 친환경연구과) ;
  • 강성근 (제주특별자치도 농업기술원 친환경연구과) ;
  • 김형신 (제주친환경농업학교)
  • Received : 2012.10.10
  • Accepted : 2012.12.24
  • Published : 2012.12.31

Abstract

The objective of this study was to determine crop rotation effects on potato yield, soil chemical and microbiological properties from a short-term field experiment from 2010 to 2011 in Jeju Island, Korea. Potato cropping systems included continuous and rotation sequences of soybean (Glycine max(L.) Merr.), barley (Hordeum vulgare var. hexastichon), rapeseed (Brassica napus L.) and broccoli (Brassica oleracea var. italica). Crop rotations increased the yields of potato from 31% to 52% compared with continuous potato. Marketable yield of potato was highest under soybean plus rapeseed rotation by $20.97MT\;ha^{-1}$ and lowest under continuous cropping by $11.95MT\;ha^{-1}$. The incidence and severity of scab disease was significantly lower in tubers from crop rotation with soybean plus barley. Differences in marketable tuber yields among rotations were associated with potato scab disease. Especially, incidence and severity of potato scab were strongly correlated with soil pH, exchangeable calcium, and bacteria population of the soil. Crop rotations significantly increased soil pH, available phosphate, exchangeable K and Ca, especially in crop rotations with soybean plus barley or rapeseed. Soil microbial biomass C of crop rotations with soybean plus barley or rapeseed, was also significantly higher compared with monoculture. In conclusion, crop rotation may decrease the incidence of soil-born pathogen by increasing soil chemical properties and soil microbial biomass. Overall, potato crop productivity was generally maintained in rotations that contained soybean plus barley or rapeseed but declined under continuous cropping system.

본 시험은 윤작처리가 감자의 상품수량과 토양 화학성 및 미생물 활성에 미치는 영향을 평가하고 알맞은 작부체계를 확립하기 위하여 시험을 수행하였다. 작부체계내 콩과 보리를 도입하여 2년 2기작으로 감자를 윤작하였을 경우 총수량과 상품수량은 대조구인 연작구 대비 각각 31% 및 53% 정도 증가하였으며, 콩과 유채를 도입하여 2년 2기작으로 감자를 윤작하였을 경우 총수량과 상품수량은 각각 57% 및 75% 정도 증가하였다. 그리고 감자의 상품수량에 미치는 요인간 상관관계를 분석한 결과 상품수량은 토양미생물 활성, 특히 Biomass C 및 세균 밀도가 높을수록 증가하였고, 토양 pH, 유효인산, 치환성 칼슘함량이 높을수록 세균 밀도가 증가하였다. 따라서 윤작을 통해서 토양 화학성을 개량하고 미생물 밀도 및 활성을 증가시키면, 토양병 발생을 억제하고 감자의 생산성을 높일 수 있을 것으로 판단된다.

Keywords

References

  1. Balota, E. L., A. Colozzi-Filho, D. S. Andrade, and R. P. Dick. 2004. Long-term tillage and crop rotation effects on microbial biomass C and N mineralization in a Brazilian oxisol. Soil Till. Res. 77: 137-145. https://doi.org/10.1016/j.still.2003.12.003
  2. Carter, M. R. and J. B. Sanderson. 2001. Influence of conservation tillage and rotation length on potato productivity, tuber disease, and soil quality parameters on a fine sandy loam in eastern Canada. Soil Till. Res. 63: 1-13. https://doi.org/10.1016/S0167-1987(01)00224-0
  3. Carter, M. R. 2002. Soil quality for sustainable land management: organic matter and aggregation interaction that maintain soil functions. Agron. J. 94: 38-47. https://doi.org/10.2134/agronj2002.0038
  4. Carter, M. R., H. T. Kunelius, J. B. Sanderson, J. Kimpinski, H. W. Platt, and M. A. Bolinder. 2003. Productivity parameters and soil health dynamics under long-term 2-year potato rotations in Atlantic Canada. Soil & Tillage Research 72: 153-158. https://doi.org/10.1016/S0167-1987(03)00085-0
  5. Carter, M. R., C. Noronha, R. D. Peters, and J. Kimpinski. 2009. Influence of conservation tillage and crop rotation on the resilience of an intensive long-term potato cropping system: Restoration of soil biological properties after the potato phase. Agri. Ecosystems and Environment. 133: 32-39. https://doi.org/10.1016/j.agee.2009.04.017
  6. Celetti, M. J., H. W. Johnston, and H. W. Platt. 1990. A note on the incidence of soilborne fungi in six crops used in rotation with potatoes. Phytoprotection. 71: 97-100.
  7. Chen, W., H. A. J. Hoitink, and L. V. Madden. 1988. Microbial activity and biomass in container media for predicting suppressiveness to damping-off caused by Phythium ultimum. Phytopathology. 78: 1447-1450. https://doi.org/10.1094/Phyto-78-1447
  8. Dalal, R. C. 1998. Soil microbial biomass-What do the numbers really mean?. Aust. J. Exp. Agric. 38: 649-665. https://doi.org/10.1071/EA97142
  9. Franchini, J. C., C. C. Crispino, R. A. Souza, E. Torres, and M. Hungria. 2007. Microbiological parameters as indicators of soil quality under various tillage and crop rotation systems in southern Brazil. Soil Till. Res. 92: 18-29. https://doi.org/10.1016/j.still.2005.12.010
  10. Friedel, J. K., D. Gabel, and K. Stahr. 2001. Nitrogen pools and turnover in arable soils under different durations of organic farming. II. Source-and-sink-function of the soil microbial biomass or competition with growing plants?. J. Plant Nutr. Soil Sci. 164: 421-429. https://doi.org/10.1002/1522-2624(200108)164:4<421::AID-JPLN421>3.0.CO;2-P
  11. Garbeva, P., J. A. van Veen, and J. D. van Elsas. 2004. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42: 243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
  12. Hungria, M. and M. A. T. Vargas. 2000. Environmental factors impacting N2 fixation in legumes grown in the tropics, with an emphasis on Brazil. Field Crop Res. 65: 151-164. https://doi.org/10.1016/S0378-4290(99)00084-2
  13. Karlen, D. L. and C. A. Cambardella. 1996. Conservation strategies for improving soil quality and organic matter storage. In: Carter, M.R., Stewart, B.A.(Eds), Structure and Organic Matter Storage in Agricultural Soils. Lewis Publishers, CRC Press, Boca Raton, FL.: 395-420.
  14. Keller, E. R. 1989. Crop rotation-an important aspect in integrated potato production. In; Vos, J., Van Loon C. D., Bollen G. J.(Eds.), Effects of crop rotation on potato production in the Temperate Zones. Kluwer Academic Publishers, Dordrecht, the Netherlands: 291-301.
  15. Kim, C. J., H. B. Lee, J. W. Cho, and C. H. Lim. 2004. Screening of Antagonistic Actinomycetes for Potato Scab Control and Isolation of Antibiotic Compound. J. Korean Soc. Appl. Biol. Chem. 47(2): 164-169.
  16. Kim, T. G. 2011. Agricultural experiment and research report of Jeju special self-governing province agricultural research and extension services: 175-184.
  17. Lacey, M. J. and C. R. Wilson. 2001. Relationship of common scab incidence of potatoes grown in Tasmanian Ferrosol soils with pH, exchangeable cation and other chemical properties of those soils. J. Phytopathology. 149: 679-683. https://doi.org/10.1046/j.1439-0434.2001.00693.x
  18. Larkin R. P. and T. S. Griffin. 2007. Control of soilborne potato disease using Brassica green manures. Crop protection. 26: 1067-1077. https://doi.org/10.1016/j.cropro.2006.10.004
  19. Mariangela, H., C. F. Julio, B. J. Osvaldino, K. Glaciela, and A. S. Rosinei. 2009. Soil microbial activity and crop sustainability in a long-trem experiment with three soil-tillage and two crop rotation systems. Applied Soil Ecology. 42: 288-296. https://doi.org/10.1016/j.apsoil.2009.05.005
  20. Merz U. 2000. Powdery scab. Research in Swizerland. In: Merz U, Lees AK(eds) Proceedings of the First European Powdery Scab Workshop: 67-71.
  21. Pedersen, E. A. and G. R. Hughes. 1992. The effect of crop rotation on development of the septoria disease complex on spring wheat in SasKatchewan. Can.J. Plant Pathol. 14: 152-158. https://doi.org/10.1080/07060669209500892
  22. Peters, R. D., A. V. Sturz, M. R. Carte, and J. B. Sanderson. 2003. Developing diseasesuppressive soils through crop rotation and tillage management practices. Soil & Tillage Research 72: 181-192. https://doi.org/10.1016/S0167-1987(03)00087-4
  23. RDA. 1995. Investigation standard of agricultural experiment and research.
  24. RDA. 2000. Analysis of plant and soil chemical properties.
  25. RDA. 2010a. Fertilizer recommendation.
  26. RDA. 2010b. Analysis of soil chemical properties.
  27. Rowe, R. 1993. Potato health management: a holistic approach, pp. 3-10. In: Rowe R.(Ed.), Potato Health Management. APS Press. Minnesota, USA, 178.
  28. Scholte, K. 1987. The effect of crop rotation and granular nematicides on the incidence of Rhizoctonia solani in Potato. Potato Res. 30: 187-199. https://doi.org/10.1007/BF02357662
  29. Shuijin, H., T. Cong, F. J. Louws, N. G. Creamer, J. P. Muller, C. Brownie, K. Fager, and M. Bell. 2006. Responses of soil microbial biomass and N availability to transition strategies from conventional to organic farming systems. Agri. Eco. and Environment. 113: 206-215. https://doi.org/10.1016/j.agee.2005.09.013
  30. Smith, J. L. and E. A. Paul. 1990. The significance of soil microbial biomass estimations. In: Bollag, J. M., Stotzky, G.(Eds.). Soil Biochemistry. 6: 357-396.
  31. Vance, E. D., P. C. Brookes, and D. S. Jenkinson. 1987. An extraction method for measuring soil micobial biomass C. Soil Biol. Biochem. 19: 703-707. https://doi.org/10.1016/0038-0717(87)90052-6
  32. Wardle, D. A., G. W. Yeates, K. S. Nicholson, K. I. Bonner, and R. N. Watson. 1999. Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. Soil Biol. Biochem. 31: 1707-1720. https://doi.org/10.1016/S0038-0717(99)00090-5
  33. Workneh, F. and A. H. C. van Bruggen. 1994. Suppression of corky root of tomatoes in soils from organic farms associated with soil microbial activity and nitrogen status of soil and tomato tissue. Phytopathology. 84: 688-694. https://doi.org/10.1094/Phyto-84-688