DOI QR코드

DOI QR Code

Classification by Zooplankton Inhabit Character and Freshwater Microbial Food Web: Importance of Epiphytic Zooplankton as Energy Source for High-Level Predator

동물플랑크톤의 서식 특성에 따른 분류와 먹이망: 상위포식자의 에너지원으로서 부착성 동물플랑크톤의 중요성

  • Choi, Jong-Yun (Department of Biological Sciences, Pusan National University) ;
  • La, Geung-Hwan (Department of Environmental Education, Sunchon National University) ;
  • Jeong, Kwang-Seuk (Department of Biological Sciences, Pusan National University) ;
  • Kim, Seong-Ki (Department of Biological Sciences, Pusan National University) ;
  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung-Hee University) ;
  • Joo, Gea-Jae (Department of Biological Sciences, Pusan National University)
  • Received : 2012.11.04
  • Accepted : 2012.12.19
  • Published : 2012.12.31

Abstract

We conducted a comprehensive monitoring for freshwater food web in a wetland system (Jangcheok Lake), from May to October, 2011. Monthly sampling for zooplankton, fish as well as organic matters, was implemented. In order to understand the food web structure and energy flow, we applied stable isotope analysis to the collected samples, based on ${\delta}^{13}C$ and ${\delta}^{15}N$ values of epiphytic particulate organic matter(EPOM) and particulate organic matter (POM), epiphytic and planktonic zooplankton, fish (Lepomis macrochirus). In the study site, epiphytic and planktonic zooplankton was 24 and 30 species, respectively, and coincidence species between epiphytic and planktonic zooplankton were 20 species. Epiphytic zooplankton were more abundant during the spring and early summer (May to July); however, planktonic zooplankton were more abundant during the autumn (September to October) season. Stable isotope analysis revealed that fish and epiphytic zooplankton had seasonal variations on their food sources. EPOM largely contributed epiphytic zooplankton in spring (May), but increasing contribution of POM in autumn (September) was detected. However, planktonic zooplankton depended on only POM in both seasons. Fish utilized both epiphytic and planktonic zooplankton, but small sized (1~3 cm), fish preferred epiphytic zooplankton, where as larger sized (4~7 cm) fish tended to consume planktonic zooplankton, and epiphytic zooplankton had important role in energy transfer. This pattern was clear when results of spring and autumn stable isotope analysis were compared. From the results of this study, we confirmed that wetlands ecosystem supported various epiphytic and planktonic zooplankton species, they depend on other food items, respectively. L. macrochirus also showed a difference of food source according to the body size, they depend on seasonal density change of zooplankton. In particular, epiphytic zooplankton was very important for growth and development of young fish in the spring.

동물플랑크톤의 서식 형태에 따른 구분(부착 및 부유성)과 월별 밀도 양상을 파악하기 위해 2011년 5월부터 10월까지 수생식물이 발달된 환경에서 동물플랑크톤 채집을 수행하였다. 조사 기간 동안, 부착성 동물플랑크톤은 총 24종, 부유성 동물플랑크톤은 총 30종으로 나타났으며, 이 중 두 서식 형태 간에 일치하는 종은 20종으로 확인되었다. 부착성 동물플랑크톤은 5~7월 동안 높은 밀도를 나타낸 반면, 부유성 동물플랑크톤은 9~10월 동안 높은 밀도를 보여 상이한 계절적 차이를 보였다. 안정동위원소 분석 결과, 부착 및 부유입자 유기물, 동물플랑크톤, 어류의 ${\delta}^{13}C$${\delta}^{15}N$ 값은 계절별로 상이하였다. 부착성 동물플랑크톤은 봄, 가을 모두 부착입자 유기물에 대한 높은 의존도를 보였으나, 가을에는 부유입자 유기물에 대해서는 일부 의존하는 것으로 나타났다. 이는 수생식물의 우점 등으로 인한 먹이질의 감소와 연관되어 있을 것으로 사료된다. 그러나 부유성 동물플랑크톤은 봄과 가을 모두 부유입자 유기물에 대해서만 의존하는 것으로 나타났다. L. macrochirus는 크기에 따라 먹이원에 대한 다른 섭식 양상을 보였는데, 부착성 동물플랑크톤이 증가된 시기(봄)에 1~3 cm 크기의 L. macrochirus는 부착성 동물플랑크톤에 대한 높은 의존도를 보였으나, 가을에 부착성 동물플랑크톤 감소하자 부유성 동물플랑크톤에 대한 의존도가 높아지는 것을 확인할 수 있었다. 4~7 cm 크기의 L. macrochirus는 상대적으로 큰 먹이원인 부유성 동물플랑크톤에 높은 의존도를 보였으며, 가을에 부유성 동물플랑크톤 밀도가 증가하자 매우 높게 의존하는 것으로 나타났다. 결론적으로 습지와 같이 수생식물이 우점되는 생태계에서 동물플랑크톤은 다양한 서식 형태(부착 및 부유성)를 가진 군집이 출현하는 것으로 파악되었으며, 이들은 각각 다른 먹이원에 대해 의존하는 것으로 나타났다. 또한 상위포식자인 L. macrochirus 또한 부착 및 부유성 동물플랑크톤의 계절별 밀도 양상에 따라 상이한 의존성을 보였으며, 특히 부착성 동물플랑크톤은 봄철 치어 성장 시기의 이들의 성장 및 발달에 매우 중요한 영향을 미치는 것으로 사료된다.

Keywords

References

  1. Adrian, R. and B. Schneider. 1999. Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. Journal of Plankton Research 21: 2175-2190. https://doi.org/10.1093/plankt/21.11.2175
  2. Angeler, D.G., M. Alvarez-Cobelas, S. Sanchez-Carrillo and M.A. Rodrigo. 2002. Assessment of exotic fish impacts on water quality and zooplankton in a degraded semiarid floodplain wetland. Aquatic Sciences 64: 76-86. https://doi.org/10.1007/s00027-002-8056-y
  3. Arcifa, M.S., T.G. Northcote and O. Froehlich. 1986. Fishzooplankton interactions and their effects on water quality of a tropical Brazilian reservoir. Hydrobiologia 139: 49-58. https://doi.org/10.1007/BF00770241
  4. Balayla, D.J. and B. Moss. 2003. Spatial patterns and popu-lation dynamics of plant-associated microcrustacea (Cladocera) in an English shallow lake (Little Mere, Cheshire). Aquatic Ecology 37: 417-435.
  5. Brown, M.E., T.M. Curtin, C.J. Gallagher and J.D. Halfman. 2012. Historic nutrient loading and recent species invasions caused shifts in water quality and zooplankton demography in two Finger Lakes (New York, USA). Journal of Paleolimnology 48: 623-639. https://doi.org/10.1007/s10933-012-9633-2
  6. Burks, R.L., E. Jeppesen and D.M. Lodge. 2000. Macrophyte and fish chemicals suppress Daphnia growth and alter life-history traits. Oikos 88: 139-147. https://doi.org/10.1034/j.1600-0706.2000.880116.x
  7. Burks, R.L., E. Jeppesen and D.M. Lodge. 2001. Littoral zone structures as Daphnia refugia against fish predators. Limnology and Oceanography 46: 230-237. https://doi.org/10.4319/lo.2001.46.2.0230
  8. Campbell, C.E. 2002. Rainfall events and downstream drift of microcrustacean zooplankton in a Newfoundland boreal stream. Canadian Journal of Zoology-Revue Canadienne De Zoologie 80: 997-1003. https://doi.org/10.1139/z02-077
  9. Chang, K.H. and T. Hanazato. 2003. Seasonal and reciprocal succession and cyclomorphosis of two Bosmina species (Cladocera, Crustacea) co-existing in a lake: their relationship with invertebrate predators. Journal of Plankton Research 25: 141-150. https://doi.org/10.1093/plankt/25.2.141
  10. Choi, J.Y., K.S. Jeong, G.H. La, H.W. Kim, K.H. Chang and G.J. Joo. 2011. Inter-annual variability of a zooplankton community: the importance of summer concentrated rainfall in a regulated river ecosystem. Journal of Ecology and Field Biology 34: 49-58. https://doi.org/10.5141/JEFB.2011.007
  11. Choi, J.Y., S.K. Kim, G.H. La, K.S. Jeong, H.W. Kim, T.K. Kim and G.J. Joo. 2012. Microcrustacean community dynamics in Upo Wetlands: Impact of rainfall and physiochemical factor on microcrustacean community. Korean Jounal of Limnology 45: 329-335.
  12. Douglas, M.M., S.E. Bunn and P.M. Davies. 2005. River and wetland food webs in Australia's wet-dry tropics: general principles and implications for management. Marine and Freshwater Research 56: 329-342. https://doi.org/10.1071/MF04084
  13. Gelinas, M., B. Pinel-Alloul and M. Slusarczyk. 2007. Alternative antipredator responses of two coexisting Daphnia species to negative size selection by YOY perch. Journal of Plankton Research 29: 775-789. https://doi.org/10.1093/plankt/fbm059
  14. Harrel, S.L. and E.D. Dibble. 2001. Foraging efficiency of juvenile bluegill, Lepomis macrochirus, among different vegetated habitats. Environmental Biology of Fishes 62: 441-453. https://doi.org/10.1023/A:1012259922727
  15. Hondorp, D.W., S.A. Pothoven and S.B. Brandt. 2005. Influence of Diporeia density on diet composition, relative abundance, and energy density of planktivorous fishes in southeast Lake Michigan. Transactions of the American Fisheries Society 134: 588-601. https://doi.org/10.1577/T04-107.1
  16. Jeppesen, E., J.P. Jensen, M. Sondergaard, M. Fenger-Gron, M.E. Bramm, K. Sandby, P.H. Moller and H.U. Rasmussen. 2004. Impact of fish predation on cladoceran body weight distribution and zooplankton grazing in lakes during winter. Freshwater Biology 49: 432-447. https://doi.org/10.1111/j.1365-2427.2004.01199.x
  17. Jones, J.I., J.O. Young, G.M. Haynes, B. Moss, J.W. Eaton and K.J. Hardwick. 1999. Do submerged aquatic plants influence their periphyton to enhance the growth and reproduction of invertebrate mutualists? Oecologia 120: 463-474. https://doi.org/10.1007/s004420050879
  18. Kim, H.W., J.Y. Choi, G.H. La, K.S. Jeong and G.J. Joo. 2010. Relationship between rainfall and zooplankton community dynamics in a riverine wetland ecosystem (Upo). Korean Jounal of Limnology 43: 129.
  19. Kobayashi, T., R.J. Shiel, P. Gibbs and P.I. Dixon. 1998. Freshwater zooplankton in the Hawkesbury-Nepean River: comparison of community structure with other rivers. Hydrobiologia 377: 133-145. https://doi.org/10.1023/A:1003240511366
  20. Koste, W. 1978. Rotatoria, die radertiere mitteleuropas: uberordnung monogononta: ein Bestimmungswerk (German Edition). 2 edition. Gebruder Borntraeger, Stuttgart.
  21. Kuczynska-Kippen, N. 2009. The spatial segregation of zooplankton communities with reference to land use and macrophytes in shallow lake Wielkowiejskie (Poland). International Review of Hydrobiology 94: 267-281. https://doi.org/10.1002/iroh.200811089
  22. Lampert, W., W. Fleckner, H. Rai and B.E. Taylor. 1986. Phytoplankton control by grazing zooplankton-A study on the spring clear water phase. Limnology and Oceanography 31: 478-490. https://doi.org/10.4319/lo.1986.31.3.0478
  23. Lee, J.Y., T. Yoshioks and T. Hanazoto. 2002. Faunal trophic interaction in an oligotrophic-dystrophic lake (Shirakoma-like, Japan). Limnology 3: 151-158. https://doi.org/10.1007/s102010200018
  24. Manatunge, J., T. Asaeda and T. Priyadarshana. 2000. The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Environmental Biology of Fishes 58: 425-438. https://doi.org/10.1023/A:1007691425268
  25. Mehner, T. and R. Thiel. 1999. A review of predation impact by 0+ fish on zooplankton in fresh and brackish waters of the temperate northern hemisphere. Environmental Biology of Fishes 56: 169-181. https://doi.org/10.1023/A:1007532720226
  26. Muzzaffar, S.B. and F.A. Ahmed. 2007. The effects of the flodd cycle on the diversity and compositioin of the phytoplankton community of seasonally fldded Ramsar wetland in Bangladesh. Wetlands Ecology and Mangement 15: 81-93. https://doi.org/10.1007/s11273-006-9014-6
  27. Nicolle, A., L.A. Hansson and C. Bronmark. 2010. Habitat structure and juvenile fish ontogeny shape zooplankton spring dynamics. Hydrobiologia 652: 119-125. https://doi.org/10.1007/s10750-010-0323-7
  28. Perrow, M.R., A.J.D. Jowitt, J.H. Stansfield and G.L. Phillips. 1999. The practical importance of the interactions between fish, zooplankton and macrophytes in shallow lake restoration. Hydrobiologia 395: 199-210.
  29. Phillips, D.L. and P.L. Koch. 2002. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130: 114-125.
  30. Sakuma, M., T. Hanazato, R. Nakazato and H. Haga. 2002. Methods for quantitative sampling of epiphytic microinvertebrates in lake vegetation. Limnology 3: 115-119. https://doi.org/10.1007/s102010200013
  31. Smirnov, N.N. and B.V. Timms. 1983. A revision of the Australian Cladocera (Crustacea). Australian Museum.
  32. Stibor, H. 1992. Predator induced life history shifts in a freshwater cadoceran. Oecologia 92: 162-165. https://doi.org/10.1007/BF00317358
  33. Takamura, N., Y. Kadono, M. Fukushima, M. Nakagawa and B.H.O. Kim. 2003. Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes. Ecological Research 18: 381-395. https://doi.org/10.1046/j.1440-1703.2003.00563.x
  34. Taniguchi, H., S. Nakano and M. Tokeshi. 2003. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology 48: 718-728. https://doi.org/10.1046/j.1365-2427.2003.01047.x
  35. Timms, R.M. and B. Moss. 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography 29: 472-486. https://doi.org/10.4319/lo.1984.29.3.0472