DOI QR코드

DOI QR Code

Flood Simulation using Vflo and Radar Rainfall Adjustment Data by Statistical Objective Analysis

통계적 객관 분석법에 의한 레이더강우 보정 및 Vflo를 이용한 홍수모의

  • 노희성 (인하대학교 사회기반시스템공학부) ;
  • 강나래 (인하대학교 사회기반시스템공학부) ;
  • 김병식 (강원대학교 방재전문대학원 도사환경방재전공) ;
  • 김형수 (인하대학교 사회기반시스템공학부)
  • Received : 2012.05.24
  • Accepted : 2012.05.28
  • Published : 2012.05.31

Abstract

Recently, the use of radar rainfall data that can help tracking of the development and movement of rainfall's spatial distribution is drawing much attention in hydrology. The reliability of existing radar rainfall compared to gauge rainfall data on the ground has not yet been confirmed and so we have difficulties to apply the radar rainfall in hydrology. The radar rainfall for the applications in hydrology are adjusted merging method derived from gage. This study uses the Mean-Field Bias (MFB) and Statistical Objective Analysis (SOA) as correction methods to create adjusted grid-based radar rainfall data which can represent the temporal and spatial distribution of rainfall. This study used a storm event occurred in August 2010 for the adjustment of radar rainfall. In addition, the grid-based distributed rainfall-runoff model (Vflo), which enables more detailed examinations of spatial flux changes in the basin rather than the lumped hydrological models, has been applied to Gamcheon river basin which is a tributary of Nakdong River located in south-eastern part of the Korean peninsular and the basin area is $1005km^2$. The simulated runoff was compared with the observed runoff in an attempt to evaluate the usability of radar rainfall data and the reliability of the correction methods. The error range of peak discharge using each correction method was within 20 percent and the efficiency of the model was between 60 and 80 percent. In particular, the SOA method showed better results than MFB method. Therefore, the SOA method could be used for the adjustment of grid-based radar rainfall and the adjusted radar rainfall can be used as an input data of rainfall-runoff models.

최근 강우의 공간분포와 이동 및 발달상황을 파악할 수 있는 레이더강우 자료의 활용이 수문학분야에서 주목받고 있지만, 레이더 강우자료는 지상강우자료와 비교하여 자료의 신뢰성 확보가 되지 않아 실제 자료의 운용 및 적용에 어려움이 있다. 따라서 수문해석 분야에서는 레이더 강우를 활용하기 위해 레이더강우를 지상강우와 합성하여 보정하고 있다. 본 연구에서는 MFB(Mean-Field Bias)보정기법과 SOA(Statistical Objective Analysis)보정기법을 이용해 2010년 8월의 강우사상에 대하여 시공간 분포를 적절하게 표현할 수 있는 격자형 레이더 강우시계열자료를 생성하였다. 또한, 기존의 집중형 수문모형보다 유역내의 공간적인 유량변동을 보다 상세하게 고려할 수 있는 격자기반의 분포형모형(Vflo)을 국내 유역(낙동강권역 : 감천유역($1005km^2$))에 적용하여, 모의유출량과 관측유출량의 비교를 통해 레이더강우자료의 활용성 및 보정방법의 정확도를 평가하고자 하였다. 각 보정방법에 의한 첨두유량 오차는 20% 내외, 모델효율은 60~80% 수준으로 나타났으며, 특히 SOA방법을 통해 보정된 격자형 레이더 강우자료는 유출모형의 입력 자료로서 수문학적 활용성이 있음을 확인할 수 있었다.

Keywords

References

  1. 건설교통부, "강우레이더에 의한 돌발홍수예보 시스템 개발 1차년도" 건설교통부, 2005
  2. 건설교통부, "강우레이더에 의한 돌발홍수예보 시스템 개발 2차년도" 건설교통부, 2006
  3. 국토해양부, "차세대홍수방어기술개발 연구보고서 (I)" 국토해양부, 2011
  4. 김병식, 홍준범, 김형수, 최규현. (2007). 조건부 합성방법을 이용한 레이더 강우와 지상 강우자료의 조합. 대한토목학회논문집, 대한토목학회, 제27권, 제3B호, pp. 255-265.
  5. 김영일, 김태순, 허준행. (2009). 레이더 자료의 군집화를 통한 Mean Field Rainfall Bias의 보정. 한국수자원학회논문집, 한국수자원학회, 제42권, 제8호, pp. 659-671
  6. 박진혁, 강부식, 이근상. (2008). 레이더강우를 이용한 GIS기반의 분포형모형 적용성 분석, 한국지형공간정보학회지, 한국지형공간정보학회, 제16권 제1호, pp. 23-32.
  7. 배덕효, 김진훈, 윤성심. (2005). 레이더 추정강우의 수문학적 활용(I): 최적 레이더 강우 추정, 한국수자원학회논문집, 한국수자원학회, 제38권 제12호, pp.1039-1049.
  8. 배영혜, 김병식, 김형수, 서병하. (2007). 칼만필터 기법에 의한 레이더 강우의 보정 및 $Vflo^{TM}$ 모형을이용한 홍수모의. 2007년도 대한토목학회학술발표회 논문집, 대한토목학회, pp. 2040-2045.
  9. 오경두. (2009). 분포형 모형 $Vflo^{TM}$에 의한 수문 해석. 제20회수공학 워크샵, 한국수자원학회, 2009. 2
  10. 최규현, 김병식, 정재욱, 현명숙. (2006). 강우레이더와 지상우량계 자료를 이용한 실시간 강우강도 추정. 2006년도 한국수자원학회 학술 발표회논문집, 한국수자원학회, pp. 1211-1514.
  11. 홍승진, 김병식, 함창학. (2010). 강우계와 레이더를 이용한 강우의 시공간적인 활용. 한국지형 공간정보학회지, 한국지형공간정보학회, 제18권 제3호, pp. 37-48.
  12. 홍준범, 김병식, 윤석영(2006) $Vflo^{TM}$ 모형을 이용한 물리기반의 분포형 수문모형의 정확성 평가, 대한토목학회 논문집, 제26권, 제6B호, pp.613-622.
  13. Anagonostou, E. N., Krajewski, W. F., Seo, D.-J., and Johnson, E. R. (1998). Mean field rainfall bias studies for WSR-88D. Journal of Hydrologic Engineering, ASCE, Vol. 3(3), pp. 149-159. https://doi.org/10.1061/(ASCE)1084-0699(1998)3:3(149)
  14. Oscar Anthony Kalinga, Thian Yew Gan. (2006). Semi-distributed modelling of basin hydrology with radar and gauged precipitation, Hydrological Processes, Volume 20 Issue 17, pp.3725-3746. https://doi.org/10.1002/hyp.6385
  15. B.S. Kim, B.K. Kim, H.S. Kim(2008) Flood simulation using the gauge-adjusted radar rainfall and physics-based distributed hydrologic model, Hydrological Processes, Volume 22 Issue 22, pp.4400-4414. https://doi.org/10.1002/hyp.7043
  16. Brandes, E. A. (1975). Optimizing rainfall estimates with the aid of radar, Journal of Applied Meteorology, Vol.14, pp.1339-1345. https://doi.org/10.1175/1520-0450(1975)014<1339:OREWTA>2.0.CO;2
  17. Freeze, R.A. and Harlan, R.L. (1969). Blueprint for a physically-based digitallysimulated hydrological response model, Journal of Hydrology, Vol. 9, pp.237-258 https://doi.org/10.1016/0022-1694(69)90020-1
  18. Gandin, L. S., 1963: Objective Analysis of Meteorological Fields. Translated by R. Harding, Israel Program for Scientific Translation, 242 pp.
  19. Preira Fo, A. J., Crawford, K. C. & Hartzell, C. L. (1998) Improving WSR-88D hourly rainfall estimates. Weath. Forecasting 13, 1016-1028. https://doi.org/10.1175/1520-0434(1998)013<1016:IWHRE>2.0.CO;2
  20. Vieux, B.E. (2001), Distributed Hydrology Modeling using GIS, Water Science and Technology Library, Kluwer Academic Publishers, Dordrecht.
  21. Vieux, B.E. Distributed Hydrologic Modeling Using GIS, 2nd ed., Kluwer Academic Publishers, 2004.
  22. Vieux, B.E. and Koehler, E. (2005). $Vflo^{TM}$ Model Advanced Training
  23. Vieux & Associates, Inc. VfloTM 4.0 User's Guide, 2008.