Methodologic Aspect of LINAC-based Stereotactic Radiosurgery

선형가속기 기반 뇌정위 방사선 수술기법

  • Choi, Tae Jin (Depratment of Medical Enginnering and Physics, Keimyung University School of Medicine)
  • 최태진 (계명대학교 의과대학 의공학교실)
  • Received : 2012.08.31
  • Accepted : 2012.09.11
  • Published : 2012.09.30

Abstract

A conversing beam is firstly designed for radiosurgery by a neurosugern Lars Leksell in 1949 with orthogonal x-rays tube moving through horizontal moving arc to focusing the beam at target center. After 2 decades he composits 201 source of the Co-60 for gamma knife which beams focused at locus. Sveral linac-based stereotactic radiosurgery using the circular collimated beam which size range for 0.4~4.0 cm in a diameter by non-coplanar multiarc have been developed over the decades. The irregular lesions can be treated by superimposing with several spherical shots of radiation over the tumour volume. Linac based techniques include the use of between 4 and 11 non-co-planar arcs and a dynamic rotation technique and use photon beam energies in the range of 6~10 MV. Reviews of the characteristics of several treatment techniques can be found in the literature (Podgorsak 1989, Schell 1991). More in recent, static conformal beams defined by custom shaped collimators or a mini- or micro-multileaf collimator (mMLC) have been used in SRS. Finally, in the last few years, intensity-modulated mMLC SRS has also been introduced. Today, many commercial and in-house SRS programs have also introduced non-invasive immobilization systems include the cyberknife and tomotherapy and proton beam. This document will be compared the characteristics of dose distribution of radiosurgery as introduced gamma knife, BrainLab include photon knife in-house SRS program and cyberknife in currently wide used for a cranial SRS.

Leksell은 뇌동정맥기형종의 중심에 280 kVp 관전압 방사선빔을 집속하는 방법으로 방사선수술법을 고안 시술한 바 있으며, 이 후 코발트-60 감마 선원 201개의 선속이 헬멧콜리메터를 지나 구의 중심에 초점을 이루게 한 감마나이프를 개발하여 표적병변에 높은 선량을 주어 비침습적으로 수술효과를 얻었다. 선형가속기는 높은 선량률과 1 mm 이내의 갠트리회전중심과 안정된 치료대회전 및 선량성능검증효과와 획기적으로 발전된 3차원선량계획 전산화에 힘입어 정밀하고 높은 정확성에 바탕을 둔 비공면궤적으로 방사선을 환부에 집속할 수 있어, 병변 주위의 정상조직에는 낮은 선량이 도달하고 병변에 높은 선량을 줄 수 있는 뇌정위방사선수술에 이용할 수 있게 되었다. 특히 Photon Knife는 환자의 체축을 이용하여 선속이 환부를 중심으로 종횡의 비공면궤적을 이루게 하여 치료선량분포에서 90%와 50% 선량폭을 2~3 mm 까지 좁힐 수 있는 기법을 보였다. 최근 선형가속기의 방사선수술은 2.5~3 mm 폭의 초박형 다엽콜리메터를 이용한 세기조절에 의한 시술이 늘어나는 경향이며, 종전의 종양의 크기에 따른 제한을 넘어 3 cm 이상의 종양에도 시행되고 있다. 뇌정위방사선수술은 선량모델을 뒷받침하는 마이크로 선량계측 및 평가와 성능보증이 필수적이며 선량분포의 경사도를 높이는 기법이 지속적으로 연구되어야 한다. 특히 초박형다엽콜리메터를 이용한 방사선수술은 다엽콜리메터 요철(Tongue and groove) 에 의해 일어나는 표적내 선량저하 부위를 평가하고 균등한 표적선량이 이루어지도록 하며, 마이크로 분해능을 가진 선량검증 방법이 앞으로 더욱 발전할 것으로 보인다.

Keywords

References

  1. Leksell L: Stereotactic radiosurgery. J Neurosurg Psychiatr 46: 797-803 (1983) https://doi.org/10.1136/jnnp.46.9.797
  2. Steiner L, Leksell L: Stereotactic radiosurgery for cerebral arteriovenous malformations: Report of a case. Acta Chir Scand 138:459 (1972)
  3. Backlund EO, Rahn T, Sarby B: Treatment of pinealomas by stereotactic radiation surgery. Acta Radiol Ther Phys Biol (Stockh.) 13:368-376 (1974) https://doi.org/10.3109/02841867409134490
  4. Alexander III E, Loeffler JS: Radiosurgery using a modified linear accelerator. Neurosurg Clin N Am 3(1):167-190 (1992)
  5. Betti OO, Galmarini D, Derechinsky V: Radiosurgery with a linear accelerator. Methodological aspects. Stereotact Funct Neurosurg 57:87-98 (1991) https://doi.org/10.1159/000099559
  6. Ahn YC, Kim DY, Choi DR, Huh SJ: Three Methods of Beam Shaping in X Knife-3 Stereotactic Radiotherapy. Radiosurgery Basel Karger 3:100-106 (2000)
  7. Leksell L: The stereotactic method and radiosurgery of the brain. Acta Chir Scand 102:316-319 (1951)
  8. Steiner L: Textbook of Cerebrovascular Surgery. 4th ed, Springer Verlag, New York (1986) pp. 1161-1215
  9. Berk HW, Agarwal SK: Radiosurgery: Baseline and Trends. Raven Press. Ltd. : Ladislau Steiner, New York (1992) pp. 49-61
  10. Andrews DW, Suarez O, Goldman HW, et al: Stereotactic radiosurgery and fractionated stereotactic radiotherapy for the treatment of acoustic schwannomas: comparative observations of 125 patients treated at one institution. Int J Radiat Oncol Biol Phys 50:1265-1278 (2001) https://doi.org/10.1016/S0360-3016(01)01559-0
  11. Choi TJ, Kim OB: Dose characteristics of stereotactic radiosurgery in high energy linear accelerator photon beam. J Korean Soc ther Radiol 10:137-145 (1992)
  12. Choi TJ, Kim OB: Evaluation of the output dose of a linear accelerator photon beams by using the ionization chamber TM31010 series through TG-51 protocol to postal monitoring output of RPC for 5 years. KJMP 22(2):92-98 (2011)
  13. AAPM REPORT NO.54: Stereotactic radiosurgery. AAPM 1-42 (1995)
  14. Andrews DW, Bednarz G, Evans JJ, Downes B: A review of 3 current radiosurgery systems. Surgical Neurology 66:559-564 (2006) https://doi.org/10.1016/j.surneu.2006.08.002
  15. Kooy HM, Nedzi LA, Loeffler JS, et al: Treatment planning for stereotactic radiosurgery of intra-cranial lesions. Int J Radiat Oncol Biol Phys 21:683-693 (1991) https://doi.org/10.1016/0360-3016(91)90687-Y
  16. Solberg TD, Boedeker KL, Fogg R, Selch MT, DeSalles AA: Dynamic arc radiosurgery field shaping: a comparison with static field conformal and noncoplanar circular arcs. Int J Radiat Oncol Biol Phys 49:1481-1491 (2001) https://doi.org/10.1016/S0360-3016(00)01537-6
  17. Winston KR, Lutz W: Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery 22:454-464 (1988) https://doi.org/10.1227/00006123-198803000-00002
  18. Betti OO, Derechinsky VE: Hyperselective encephalic irradiation with linear accelerator. Acta Neurochir Suppl (Wein) 33:385-390 (1984)
  19. Colombo F, Benedetti A, Pozza F, et al: External stereotactic irradiation by linear accelerator. Neurosurgery 16:154-160 (1985) https://doi.org/10.1227/00006123-198502000-00005
  20. Hartmann GH, Schlegel W, Sturm V, et al: Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int J Radiat Oncol Biol Phys 11:1185-1192 (1985) https://doi.org/10.1016/0360-3016(85)90068-9
  21. Houdek PV, Fayos JVM, Van Buren JM, et al: Stereotaxic radiotherapy technique for small intracranial lesions. Med Phys 12:469-472 (1985) https://doi.org/10.1118/1.595673
  22. Podgosak EB, Olivier A, Pla M, et al: Physical aspects of dynamic stereotactic radiosurgery. Applied Neurophysiology 50:263-268 (1987)
  23. Podgosak EB, Olivier A, Pla M, et al: Dynamic Stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 14:112-125 (1988)
  24. Choi TJ, Kim JH, Kim OB: A new approach with combined stereotactic transmultiarc beams for radiosurgery based on the linear accelerator: photon knife. J Korean Soc Ther Radiol 14(2):149-158 (1995)
  25. Brown RA: A computerized tomography-computer graphics approach to stereotaxic localization. J Neurosurg 50:715-720 (1979) https://doi.org/10.3171/jns.1979.50.6.0715
  26. Choi TJ, Kim OB, Son EI: Determination of Target Position with BRW Stereotactic Frame in Non-orthgonal CT Scans. KJMP 3(1):53-62 (1992)
  27. Choi TJ, Jeung YY, Kim JH, et al: Determination of target coordinates and dose parameters of trans-multi-arc beam in photon knife system. Keimyung Med J 23(1):24-33 (2004)
  28. Schell MC, Smith V, Larson DA, Wu A, Flickinger JC: Evaluation of radiosurgery techniques with cumulative dose-volume histograms in linacbased stereotactic external beam irradiation. Int J Radiat Oncol Biol Phys 20:1325-1330 (1991) https://doi.org/10.1016/0360-3016(91)90245-Y
  29. Sengbusch ER, Mackie TR: Maximum kinetic energy considerations in proton stereotactic radiosurgery. J Appl Clin Med Phys 12:3533 (2011)
  30. Siochi RA, Balter P, Charles DB, et al: A rapid communication from the AAPM TG 201: Recommendations for the QA of external beam radiotherapy data transfer. AAPM TG 201: Quality assurance of external beam radiotherapy data transfer. J Appl Clin Med Phys 12(1):170-181 (2011) https://doi.org/10.1120/jacmp.v12i1.3479