DOI QR코드

DOI QR Code

A Numerical Analysis of Acoustic-Pressure Response of H2-Air Diffusion Flames with Application of Time-Lag Model

시간지연 모델의 적용을 통한 수소/공기 확산화염의 음향파 응답 분석

  • 손채훈 (세종대학교 기계항공우주공학부) ;
  • 임준석 (세종대학교 대학원 기계공학과)
  • Received : 2011.05.26
  • Accepted : 2011.09.09
  • Published : 2012.02.01

Abstract

Acoustic-pressure response of diluted hydrogen-air diffusion flames is investigated numerically by adopting a fully unsteady analysis of flame structures in low and high pressure regimes. As acoustic frequency increases, finite-rate chemistry is enhanced through a nonlinear accumulation of heat release rate for any pressure regime, leading to a high amplification index. Same numerical results are analyzed with application of a pressure-sensitive time lag model, and thereby, interaction index and time lag are calculated for each pressure regime. The interaction index has the largest value in each pressure regime at an acoustic frequency near 1000 Hz. In a high-pressure regime, flames are more unstable than in a low-pressure regime. The interaction index shows a good agreement with the amplification index.

희석된 수소-공기 확산화염의 응향 응답 특성을 저압과 고압 영역에서의 화염 구조 해석을 토대로 수치적으로 조사하였다. 음향 주파수가 증가함에 따라 어느 압력 영역에서든 열방출율의 비선형 축적현상에 의해 유한 화학반응의 효과가 증진된다. 이는 결국 높은 음향 증폭으로 이어지게 된다. 동일한 계산 결과를 압력 감응 시간지연 모델에 의해 재해석하였다. 시간 지연 모델의 적절한 적용을 통해, 각 압력 영역에서 시간지연과 간섭지수 인자가 정량화되었다. 음향 증폭의 정도를 나타내는 간섭지수는 어느 압력 영역에서든 1000 Hz 근처에서 최고값을 나타내었고, 고압영역에서 화염이 더 불안정한 응답을 보였다. 음향 주파수에 따른 간섭지수의 변화 경향은 기존의 증폭지수 변화 경향과 잘 일치하였다.

Keywords

References

  1. Culick, F. E. C. and Yang, V., Liquid Propellant Rocket Combustion Instability, AIAA, Washinton DC, 1995, p.3
  2. Sohn, C. H., Chung, S. H., Kim, J. S., and Willams, F. A., "Acoustic Response of Droplet Flames to Pressrue Oscillations," AIAA Journal, Vol. 34, 1996, pp.1847-1854 https://doi.org/10.2514/3.13317
  3. Sohn, C. H., Chung, S. H., Lee, S. R., and Kim, J. S., "Structure and Acoustic-Pressure Response of Hydrogen-Oxygen Diffusion Flames at High Pressure," Combustion and Flame, Vol. 115, 1998, pp.299-312 https://doi.org/10.1016/S0010-2180(98)00007-8
  4. Sohn, C. H., Chung, S. H., Kim, "Effect of Pressure on the Extinction, Acoustic Pressure Reponse, and NO Formation in Diluted Hydrogen-Air Diffusion Flames," Combustion and Flame, Vol. 121, 2000, pp.288-300 https://doi.org/10.1016/S0010-2180(99)00140-6
  5. Sohn, C. H., "Unsteady Analysis of Acoustic Pressure Response in N2 Diluted Flames," Combustion and Flame, Vol. 128, 2002, pp.111-120 https://doi.org/10.1016/S0010-2180(01)00336-4
  6. Pierringger, J., Sattelmayer, T., and Fassl. F., "Simulation of Combustion Instabilities in Liquid Rocket Engines with Acoustic Perturbation Equations," Journal of Propulsion and Power, Vol. 25, No. 5, 2009, pp.426-441
  7. Linan, A. and Williams, F. A., "Ignition in an Unsteady Mixing Layer Subject to Strain and Variable Pressure," Combustion and Flame, Vol. 95, 1993, pp.31-46 https://doi.org/10.1016/0010-2180(93)90050-D
  8. Smooke, M. D., 1982, "Solution of Burner Stabilized Premixed Laminar Flames by Boundary Value Method," Journal of Computational Physics, Vol. 48, pp.72-105 https://doi.org/10.1016/0021-9991(82)90036-5
  9. Kee, R. J., Rupley, F. M., and Miller, J. A., CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia National Laboratories Report, 1989, SAND89-8009
  10. Kee, R. J., Warnatz, J., and Miller, J. A., A Fortran Computer Code Package for the Eveluation of Gas-Phase Viscosities, Conductivities, and Diffustion Coefficients, Sandia National Laboratories Report, 1983, SAND83-8209
  11. Maas, U. and Warnatz, J., "Ignition Processes in Hydrogen-Oxygen Mixtures," Combustion and Flame, Vol. 74, 1988, pp.53-69 https://doi.org/10.1016/0010-2180(88)90086-7
  12. Rayleigh, J. W. S., The Theory of Sound, Vol. II, Dover, 1945, p.226