DOI QR코드

DOI QR Code

Langer Modification in WKB Quantization for Translationally Shape Invariant Potentials

  • Sun, Ho-Sung (Department of Chemistry, Sungkyunkwan University)
  • Received : 2011.11.22
  • Accepted : 2011.12.16
  • Published : 2012.03.20

Abstract

When the Langer modification is applied to Coulomb potential, the standard WKB quantization yields an exact energy spectrum for the potential. This Langer modification has been known to be related to the centrifugal term appearing in Coulomb potential. But we find that a similar modification exists for all translationally shape invariant potentials without referring to the centrifugal term. The characteristic shape of the potentials accounts for the generalized version of Langer modification that makes the WKB quantization valid for all translationally shape invariant potentials.

References

  1. Wentzel, G. Z. Physik 1926, 38, 518. https://doi.org/10.1007/BF01397171
  2. Kramers, H. A. Z. Physik 1926, 39, 828. https://doi.org/10.1007/BF01451751
  3. Brillouin, L. C. R. Hebd. Acad. Sci. 1926, 183, 24.
  4. Froman, N.; Froman, P. O. JWKB Approximation; North Holland: Amsterdam, 1965.
  5. Merzbacher, E. Quantum Mechanics; Wiley: New York, 1970
  6. Friedrich, H.; Trost, J. Phys. Rep. 2004, 397, 359. https://doi.org/10.1016/j.physrep.2004.04.001
  7. Ou, F. C.; Cao, Z. Q.; Shen, Q. S. J. Chem. Phys. 2004, 121, 8175. https://doi.org/10.1063/1.1799015
  8. Ma, Z. Q.; Xu, B. W. Int. J. Modern Phys. E 2005, 14, 599. https://doi.org/10.1142/S0218301305003429
  9. Ma, Z. Q.; Xu, B. W. Europhys. Lett. 2005, 69, 685. https://doi.org/10.1209/epl/i2004-10418-8
  10. Grandati, Y.; Bérard, A. Phys. Lett. A 2011, 375, 390. https://doi.org/10.1016/j.physleta.2010.11.010
  11. Qiang, W. C.; Dong, S. H. Europhys. Lett. 2010, 89, 10003. https://doi.org/10.1209/0295-5075/89/10003
  12. Dong, S. H.; Morales, D.; García-Ravelo, J. Int. J. Modern Phys. E 2007, 16, 189. https://doi.org/10.1142/S0218301307005661
  13. Young, L. A.; Uhlenbeck, G. E. Phys. Rev. 1930, 36, 1158.
  14. Langer, R. E. Phys. Rev. 1937, 51, 669. https://doi.org/10.1103/PhysRev.51.669
  15. Berry, M. V.; Mount, K. E. Rep. Prog. Phys. 1972, 35, 315. https://doi.org/10.1088/0034-4885/35/1/306
  16. Landau, L. D.; Lifshitz, E. M. Quantum Mechanics; Pergamon: Oxford, 1965.
  17. Friedrich, H.; Trost, J. Phys. Rev. Lett. 1996, 26, 4869.
  18. Hur, J.; Lee, C. Ann. Phys. 2003, 305, 28. https://doi.org/10.1016/S0003-4916(03)00005-8
  19. Moritz, M. J.; Eltschka, C.; Friedrich, H. Phys. Rev. A 2001, 63, 042102. https://doi.org/10.1103/PhysRevA.63.042102
  20. Friedrich, H.; Trost, J. Phys. Rev. A 1999, 59, 1683. https://doi.org/10.1103/PhysRevA.59.1683
  21. Hainz, J.; Grabert, H. Phys. Rev. A 1999, 60, 1968
  22. Flugge, S. Practical Quantum Mechanics I; Springer-Verlag: Berlin, 1971.
  23. Kang, J. S.; Schnitzer, H. J. Phys. Rev. D 1975, 12, 841. https://doi.org/10.1103/PhysRevD.12.841
  24. M. N. Phys. At. Nucl. 1993, 56, 365.
  25. Gu, X.; Dong, S. Phys. Lett. A 2008, 372, 1972. https://doi.org/10.1016/j.physleta.2007.11.003
  26. Sergeenko, M. N. Phys. Rev. A 1996, 53, 6.
  27. Cooper, F.; Khare, A.; Sukhatme, U. Phys. Rep. 1995, 251, 267. https://doi.org/10.1016/0370-1573(94)00080-M
  28. Yin, C.; Cao, Z. Ann. Phys. 2010, 325, 528. https://doi.org/10.1016/j.aop.2009.11.004
  29. Barclay, D. T. Phys. Lett. A 1994, 185, 169. https://doi.org/10.1016/0375-9601(94)90841-9
  30. Natanzon, G. A. Teoret. Mat. Fiz. 1979, 38, 146. https://doi.org/10.1007/BF01016836
  31. Ginocchio, J. N. Ann. Phys. 1984, 152, 203. https://doi.org/10.1016/0003-4916(84)90084-8
  32. Cooper, F.; Ginocchio, J. N. Phys. Rev. D 1987, 36, 2458. https://doi.org/10.1103/PhysRevD.36.2458
  33. Barclay, D. T.; Maxwell, C. J. Phys. Lett. A 1991, 157, 357. https://doi.org/10.1016/0375-9601(91)90869-A
  34. Gedenshtein, L. JETP Lett. 1983, 38, 356.
  35. Grandati, Y.; Berard, A. Ann. Phys. 2010, 325, 1235. https://doi.org/10.1016/j.aop.2010.03.008