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In this paper we develop a minimalist model of single molecule spectroscopy in a dynamic environment. Our

model is based upon a lattice system consisting of a probe molecule embedded in an Ising-model like

environment. We assume that the probe molecule interacts with the Ising spins via a dipole-dipole potential,

and calculate free energy curves and lineshapes of the system. To investigate fluctuation behavior of the system

we exploit the metadynamics sampling method. In particular, using the method, we calculate the free energy

curve of magnetization of the lattice and that of the transition energy of the probe molecule. Furthermore, we

compare efficiencies of three different sampling methods used; unbiased, umbrella, and metadynamics

sampling methods. Finally, we explore the lineshape behavior of the probe molecule as the system undergoes

a phase transition from a sub-critical and to a super-critical temperature. We show that the transition energy of

a probe molecule is broadly distributed due to the heterogeneous, local environments.
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Introduction

Traditionally spectroscopic measurements in condensed

phases have involved a large number of molecules so that

ensemble-averaged quantities are usually reported. How-

ever, recent developments in optical spectroscopic techniques

have allowed us to observe properties of single, individual

molecules in various systems,1,2 including low temperature

crystals,3,4 quantum dots,5 and biological environments.6,7

Those techniques dubbed single molecule spectroscopy

(SMS) have made it possible to study properties of mole-

cules at its ultimate detail,8 and found unexpected dynamic

phenomena at the level of individual molecules, such as

spectral diffusion,9 power-law blinking processes,10,11 and

single molecule kinetics,12 to just name a few. 

Single molecule spectroscopy intrinsically eliminates

ensemble averaging, and any measurements from SMS

report fluctuation phenomena that arise due to either spatial

or dynamic (or both) heterogeneity of the interaction bet-

ween a probe molecule and its local environments. These

fluctuation phenomena manifest themselves in many differ-

ent aspects in SMS. One example is non-trivial, photon

counting statistics observed from SMS in various cases.

Both experimental13,14 and theoretical studies11,15-20 have

been performed in this area. Another example of the fluc-

tuation phenomena in SMS is dynamic heterogeneity

observed in many different systems, including supercooled

liquids,21-24 room-temperature ionic liquids25 as well as pro-

tein folding kinetics.26,27

Observing fluctuation phenomena opens up a unique

possibility of obtaining rich and valuable microscopic infor-

mation that are normally hidden in ensemble measurements.

Much of this information concerns not only a single mole-

cule itself but interaction between the molecule and its local

environment. Even though the molecules are chemically

identical, they exhibit molecule-to-molecule fluctuations in

their spectral properties due to the heterogeneity of local

environments. For example, molecules in a cell may behave

very differently from those in a solution. Also, spectral

lineshapes of probe molecules in matrices can change in

time as the solvent configurations undergo dynamical pro-

cesses. For this reason, it is critical that one has to sample a

sufficiently large number of single molecules in SMS in

order to observe hidden but important, rare events that are

important in dynamics of complex, condensed phase systems.

Only by doing so, SMS will provide statistically meaningful

properties of molecules as well as dynamic mechanisms in

condensed phase systems.

Speaking of the fluctuation phenomena and the impor-

tance of rare but important events, similar issues arise in the

calculation of free energy surfaces from computer simula-

tions.27-29 When sampling equilibrium configurations of the

system it is improbable to visit the region of the configu-

ration space with the free energy being sufficiently higher

than thermal energy. A chance to visit those regions is

exponentially suppressed by the Boltzmann factor. To over-

come such difficulty in free energy calculations, novel

sampling methods have been invented, including umbrella

sampling,30 replica exchange methods,31 and non-equilibrium

methods32. A recent addition to this list is metadynamics

method developed by Parrinello and co-workers.33 This

powerful technique has been applied not only to classical but

also to quantum systems.34,35

In this paper we will develop a minimal but generic model

of SMS in a condensed-phase environment. Based upon this
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model we calculate spectroscopic properties such as mag-

netization and optical transition energy of the probe mole-

cule via the metadynamics method. Thus, the purpose of the

paper appears two-fold. First, we will create a minimalist

model of SMS. Second, we demonstrate the efficiency of

metadynamics method applied to the model and compare the

method with other conventional free energy sampling

methods.

This paper is organized as follows. First, we develop our

model system to be studied in this work. We then give a brief

introduction of the metadynamics sampling method in the

section of Computational Methods. Then, we present and

discuss our calculation results in the next section. Finally, we

summarize our results in the Conclusion section.

Model System

Motivation for this work arises from a SMS experiment

performed on an impurity molecule embedded in a low-

temperature crystal studied by Moerner and co-workers.36 In

that study the crystal matrix consisted of p-terphenyl mole-

cules with three phenyl rings, and pentacene molecules were

introduced as a probe molecule, whose spectral properties

are recorded via SMS. In the crystal phase, two outer phenyl

rings of the p-terphenyl molecule lie on the same plane,

whereas the central phenyl ring may take one of the two

possible orientations with respect to the plane of outer rings.

It is known that above a critical temperature the central

phenyl ring can take either of two possible configurations

with equal probabilities, whereas below the critical temper-

ature, central phenyl rings are ordered in an antiferromag-

netic manner because of steric hindrance and anisotropic

interactions.

In modeling the system, we regard p-terphenyl crystals as

a lattice system consisting of interacting two-level systems.

One of the simplest ways to describe interactions in two-

level systems is via Ising model.30 Based upon this idea and

following an earlier approach37 we envision the above

system as a probe molecule embedded in a two-dimensional

Ising model. As well known from statistical mechanics, the

Ising model consists of spins on a lattice that interact with

other nearest neighbor spins. In our model, spin variables

mimic configurations of central phenyl rings in the experi-

ment. With this realization in mind the Hamiltonian of the

lattice system is given by that of the Ising model,30

. (1)

Here, Si is a spin variable at the i-th lattice site with a

possible value of either +1 or −1. J and h are a coupling

constant and an external magnetic field, respectively. In Eq.

(1) the first summation is done over all nearest neighbor

pairs while the second is over all spins. 

In order to mimic very dilute concentrations of probe

molecules in SMS, we introduce a single, probe molecule as

a spin variable located at the center of a whole lattice

system, denoted by the index 0. To make the situation even

simpler, we assume that the size of the probe molecule is

comparable to that of the matrix molecules. Because the

molecular weight of the pentacene molecule is larger than

that of the p-terphenyl molecule, we imagine that the probe

molecule is static by fixing the spin configuration of the

probe molecule throughout the simulation. It is rather

straightforward to lift this assumption and consider the case

of a dynamic probe molecule.

The optical transition energy of the probe molecule

consists of two terms. The first term is the intrinsic transition

energy of a bare probe molecule itself, and is independent of

the location of the probe. The other term arises due to the

interaction between the probe molecule and time-dependent

fluctuations of the environment. We model it via dipole-

dipole interactions characterized by 1/r3. Thus, the transition

energy of a probe molecule at the center can be written as 

, (2)

where E0 is the transition energy of a bare probe molecule

and JP is an energy scale for the interaction between the

probe and lattice molecules. ri is the distance between the

probe and the i-th spin in the matrix.

The total Hamiltonian of the system is simply given by

. (3)

Here, the lattice Hamiltonian  is identical to Eq. (1),

except that the central site which is occupied by the probe

molecule is excluded from the sums. For simplicity, we set

the energy scale of our system by choosing J = JP = 1,

assuming that the probe-lattice interaction is the same as that

between the lattice molecules. We will only consider the

case of zero external magnetic field, h = 0, as in the experi-

ment.36 Since the bare transition energy E0 is a constant,

independent of the lattice site, we set it to be zero without

loss of generality.

Computational Methods: Metadynamics

Suppose we have identified relevant order parameters or

collective coordinates of the system over which we want to

construct the free energy surfaces. Usually brute-force, un-

biased sampling of equilibrium configurations using the

Metropolis algorithm is not very efficient in constructing

free energy curves, especially when the case when free

barriers, much higher than thermal energy, exist in the

system. This is indeed the case where two stable phases

coexist below the critical temperature in the Ising model. 

To overcome this problem, we introduce the meta-

dynamics method.33,38 In the metadyamics method, the system

Hamiltonian is biased by a history-dependent potential

throughout the simulation. Briefly, during the simulation,

Gaussian functions are continuously added to the system

Hamiltonian. In this way, system will have more chances to

explore the configuration space, which otherwise would

HL = −J  
<i j>,
∑ SiSj − h  

i
∑ Si

HP = E0 − JP  
i 0≠
∑

Si

ri
3

-----

HT = HL′+HP = J–  

<i j>, ,i, j 0≠
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Si
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3
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have little chances of visitations by the original system. We

illustrate the procedure of the metadynamics sampling in the

following.

Magnetization. We first calculate the free energy curve of

magnetization, F(m), of the two-dimensional Ising system

itself without a probe molecule via metadynamics. Here, we

choose the normalized, spontaneous magnetization m as an

order parameter to describe the free energy profile of the

system,

. (4)

We start with the original Hamiltonian HL and modify it

into a metadynamics Hamiltonian  (k = 1, 2, 3, ...) through

the sequence of metadynamics steps (MDSs) in the follow-

ing way. For the first MDS, we take the original Hamiltonian

HL as a metadynamics Hamiltonian, . Suppose the system

is now at the k-th MDS, and the current metadynamics

Hamiltonian is given by . During the k-th MDS, we

perform relatively short, equilibrium samplings of the con-

figurations of the system using , and we obtain the

probability distribution Pk(m) for a certain range of magneti-

zation. If the probability distribution turns out to be narrow,

the system is considered to be in a free energy well. In order

to escape from this well, the system needs an energy bias.

The energy bias is provided by adding a Gaussian potential

to the original Hamiltonian. The Gaussian function Gk(m) to

be added to the system at the k-th MDS is given by 

. (5)

By adding the Gaussian function Gk to the current meta-

dynamics Hamiltonian , we construct a new metadynamics

Hamiltonian  for the next MDS, 

. (6)

Using the metadynamics Hamiltonian , we sample the

probability distribution,  at the (k+1)-th MDS, and

we continue the procedure. 

At each MDS, the Gaussian function Gk is constructed

from the sampled probability distribution, Pk(m). In Eq. (5),

the center of the Gaussian  is chosen as the most probable

value  in Pk(m). Because most of the probability

distributions obtained during one MDS are far from a well-

behaved normal distribution, one must be careful in

choosing the Gaussian width, δmk. In practice, we take the

width of the Gaussian function δmk as half of the smaller

value between  and ,

, (7)

where , , and  are the maximum, minimum,

and most probable magnetization values of Pk(m). Ak is a

constant, representing an overall magnitude of the Gaussian.

By the time of the k-th MDS, a history dependent potential,

Fk(m), will have been constructed by accumulation of

Gaussians and added to the system,

. (8)

Adding Gaussians to the system Hamiltonian plays the

role of filling up “puddles” in the free energy curve. Once

the Gaussian Gk is added, region of the configuration space

with  will be avoided in the next sampling, and other

regions will have more chance to visit in the next MDSs. By

iterating this procedure the system will be able to explore all

of the configuration space equally well.

After passing many MDSs, the system will have explored

any barriers and wells in the free energy curve, and have

sampled the entire range of magnetization sufficiently.

Eventually, the free energy curve of the system becomes

flattened out. Then, the real free energy curve we want to

sample will be obtained as a negative of Fk(m),33,38

(9)

Energy of a Probe Molecule. Now, we consider our

original model, which consists of a probe molecule

embedded in the Ising lattice. The Hamiltonian of the system

is given by HT in Eq. (3). Metadynamics sampling of the

probe molecule’s energy can be performed in a similar way

as that of the magnetization, once we choose the energy of

the probe as E = HP in Eq. (2) as an order parameter. The

metadynamics Hamiltonian  obtained at the k-th MDS is

given by 

. (10)

Here, the Gaussian functions are constructed from the

probability distribution of the transition energy of the probe

molecule, Pl(E).  is the mean of the Gaussian and is taken

as the most probable energy in Pl(E) There is a technical

issue in choosing the width of the Gaussian, , and we

will turn to this later.

Results and Discussion

We use a two-dimensional lattice with the size of 50 × 50.

We first consider the case of the Ising model itself without a

probe molecule, and the Metropolis algorithm is used for

performing Monte Carlo simulations. After equilibrating the

system, we sample magnetizations at each Monte Carlo step

(MCS) during the total 2500 MCSs, which corresponds to

one MDS. Then, by following the protocol described in the

previous section, we can reconstruct the free energy curve of

magnetization. 

We first illustrate the performance of metadynamics

sampling by showing the trajectory of the Gaussian function

added at each MDS. Below the well known critical temper-

ature Tc = 2.27, the two-dimensional Ising model exhibits

coexistence between two phases, up-spin rich and down-spin

rich phases, separated by a large free energy barrier. Thus, it

is very difficult to sample both phases in a single simulation
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with a usual Metropolis sampling method, especially in the

barrier top region. However, the metadynamics sampling

method allows a very efficient sampling method as illust-

rated in Figure 1. 

Figure 1 shows trajectories of the center of Gaussian at

four different temperatures, T = 1.6, 2.1, 2.5, and 3.0, and

Figure 1(a) and (b) are subcritical cases, while Figure 1(c)

and (d) are supercritical cases, respectively. From wide

variations in the average magnetization, it is evident that the

metadyamics method allows for an efficient sampling over

the entire phase space even below Tc.

Using the metadyamics method it is rather straightforward

to calculate the magnetization free energy curve of the

system, and we show the result in Figure 2. Figure 2 shows

that a high free energy barrier separates two minima, corre-

sponding to ferromagnetic phases at low temperatures below

Tc, and a single paramagnetic phase appears at high temper-

atures above Tc. For the sake of visualization, we arbitrarily

shifted the free energy curves such that they coincide at the

zero magnetization. We notice that there appears a bit of

roughness in the calculated free energy curves. This arises

because of the finite width of the added Gaussians. 

We now check the results obtained from the metadynamics

sampling against those from the umbrella sampling39 in

Figure 3. In general, they are in good agreements with each

other although there are small differences, especially in the

low temperature case. We now compare efficiencies of

the three methods; unbiased, umbrella, and metadynamics

samplings. It turns out that in most cases the metadynamics

method is the best. For example, at T = 2.0, it only needs

about 106 MCSs to obtain the free energy curve given in the

Figure 3. In contrast, the unbiased sampling requires about

1011 MCSs in order to overcome a free energy barrier and to

produce a free energy curve with a similar quality of

statistics. Comparing with the umbrella sampling method,

the metadynamics method turns out to be about 30% faster

in the cases we studied. 

The unbiased sampling method collects configurations

with a usual Boltzmann factor. Since the free energy is given

by the logarithm of the probability distribution, a linear

increase in the free energy barrier leads to an exponential

increase in the number of samplings necessary, which in turn

leads to an exponential increase in the simulation time. The

umbrella sampling method overcomes this difficulty first by

dividing the configuration space according to the order

parameter value by applying a biasing potential. In our work,

we choose an infinite square well as a biasing potential. Then,

each configuration space is sampled one by one, following

the Metropolis algorithm. In such a “divide-and-conquer”

approach, the umbrella sampling method may result in an

O(N) algorithm in favorable situations.

In contrast, the metadynamics method directly estimates

the free energy curve by escaping free energy wells succe-

ssively with the help of added Gaussians. By adding more

Gaussians one successively explores higher and higher

regions in the free energy curves. Thus, compared with the

Figure 1. Trajectories of the center of Gaussians added to the
system shown at four different temperatures during each MDS.
Temperatures are chosen as (a) T = 1,6, (b) T = 2.1, (c) T = 2.5, and
(d) T = 3.0.

Figure 2. Free energy curves of the magnetization in the two-
dimensional Ising model at various temperatures. 

Figure 3. Comparison of free energy curves of the magnetizations
sampled with unbiased sampling and with metadynamics method.
Temperatures are the same as in Figure 1.
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umbrella sampling the metadynamics method can become

very efficient when the free energy curve is steep or has a

hierarchical structure. One drawback of the metadyamics

method that we already observed is that due to the finite

width of the Gaussians it may become difficult to obtain a

very smooth free energy curves. Although we did not try to

optimize the width of the Gaussians, further optimization

will yield lead to an improvement in statistics.

Next, we turn to the case of a probe molecule embedded in

the Ising lattice system. Figure 4 shows the transition energy

as a function of MCS during the simulation. First, we note

that the transition energy constantly fluctuates in time. This

is a phenomenon, called spectral diffusion, and it has been

observed in many different examples of SMS.5,8,9 Our model

system, while being very simple, well captures the spectral

diffusion behavior observed in SMS. It is also interesting to

see that as the temperature is raised the transition energy

undergoes a qualitative change, from intermittent to random

walk behavior. This indicates that the local environment

around the probe molecule is rather static at a low temper-

ature, interrupted by rare fluctuations, and it undergoes a

transition into a more fluctuating, dynamic environment as

the temperature is raised up. 

Since the transition energy is mostly dominated by spins

close to the probe molecule due to its inverse-cubic power

law, it fluctuates more easily than the magnetization. Accord-

ingly, we sample transition energies at every spin flip during

1 MCS for each MDS. Other conditions of metadynamics

are the same as before, except for the area of Gaussians and

the method of determining δE. Because of the discreteness

of the transition energy, sampling at each MDS may give

very narrow distributions of the transition energy. Addition

of Gaussians constructed from these distributions thus may

not yield efficient sampling method if we choose δE in the

same way as δm in Eq. (7). For this reason, we introduce a

pre-defined, cut-off value, δEcut. If δE, calculated in the

same way as Eq. (7), turns out to be less than δEcut, we take

δE as the latter, otherwise, as the former, that is,

. (11)

In this work, we set δEcut = 0.01 at T = 1.6, δEcut = 0.02 at T

= 2.1, and δEcut = 0.04 at both T = 2.5 and T = 3.5. 

Unlike the spontaneous magnetization which involves all

spins of the system, the transition energy of the probe

molecule is dominated by spins surrounding the probe

molecule due to dipolar interaction. Thus, the transition

energy may vary quickly compared with the magnetization.

Because of that, the unbiased sampling method may be

utilized in calculating the free energy profile. 

We can check this point by comparing the statistics of

unbiased sampling method and that of metadynamics in

Figure 5. Figure 5 shows free energy curves obtained by the

two methods at four different temperatures. First of all, we

note that energies are broadly distributed between −9 and 9.

This wide distribution may seem a little strange at first,

especially at a low temperature case. However, by counting

contributions of neighboring spins to the transition energy of

the probe molecule, it is easy to show that about half of the

total transition energy comes from nearest neighbors in the

case of dipolar interaction in two-dimension. Thus, thermal

fluctuations in local, nearest neighbor spins around the probe

will entail rather a broad distribution of the transition energy

even below the critical temperature. 

Figure 5 also exhibits that the free energy curve is asym-

metric, and configurations with low transition energies are

more probable than those with high transition energies. As

the temperature increases, the free energy curves become

less asymmetric. This asymmetry comes from the specific

type of the interaction between the probe molecule and the

lattice spins given in Eq. (2). In a sense, the probe molecule

plays a similar role as an external magnetic field.

As in the case of magnetization, the metadynamics method

δE = max δEcut, 
1

2
---min Emax Emp– , Emp Emin–{ }

⎩ ⎭
⎨ ⎬
⎧ ⎫

Figure 4. Time-dependent fluctuations of the transition energy of
the probe molecule at different temperatures. Temperatures are
chosen as (a) T = 1.6, (b) T = 2.1, (c) T = 2.5, and (d) T = 3.5.

Figure 5. Free energy curves of the transition energy obtained by
unbiased sampling and metadynamics sampling methods. Temper-
atures are the same as in Figure 4.
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turns out to be more efficient than the unbiased sampling

method in the above calculations. For example, at T = 1.6

shown in Figure 5(a), we can only obtain hundreds of

configurations with transition energies around E = 1.0 even

after 640000 MCSs. Thus, the statistics near the high free

energy regions, such as E ≈ 6, is very poor in the unbiased

sampling case. Moreover, due to the discrete change in the

probe energy the free energy curve is rather rugged. In

contrast, the metadynamics method samples well over a

whole range of transition energy only over 2000 MCSs.

There are some cases where the metadynamics method

results in somewhat zigzag-like free energy curves com-

pared with the unbiased sampling methods, for example, in

Figure 5(b) and 5(c). Again, this is because the way we

choose the width of the Gaussians is rather simple and far

from optimal. Further efforts in choosing the width of the

Gaussians should be able to resolve this problem.

Finally, in order to mimic the lineshape of a probe

molecule observed in SMS, we plot the energy distribution

convoluted by a Lorentzian weight function,

. (12)

The function W(ε) will correspond to the normalized, line-

shape function of a probe molecule that is directly measured

in SMS. In Eq. (12), the normalized distribution of transition

energies is obtained from the free energy curve F(E)

sampled by the metadynamics method, and is given by

P(E) = e−F(E)/Z, where . The natural damp-

ing constant γ is chosen as γ = 0.1.

Figure 6 shows calculated the lineshapes of a single probe

molecule at different temperatures. At a very low temper-

ature, shown in Figure 6(a), the distribution appears very

narrow with small side peaks. This is because spins are

strongly correlated with each other, and a probe molecule

sees itself located in a rather, static environment. However,

as the temperature increases, the lineshape becomes broad-

ened due to time-dependent fluctuations of environments

surrounding the probe molecule. At a high temperature,

because spins are less correlated, the probe molecule en-

counters many different realizations of local environments,

which results in the spectral broadening. A similar feature

has been observed in the case of Ising spin glass sysem.36

Conclusion

In this paper we have developed a minimalist model of

SMS in a dynamic environment. We calculated the free

energy profiles of magnetization and transition energy, which

are both experimental observables. We also compared effici-

encies of different sampling methods. Among the unbiased,

umbrella, and metadynamics sampling methods, the meta-

dynamics method turns out to be a very efficient method,

particularly when sampling the system with a steep free

energy barrier. Although there are some cases where the

metadynamics method yields rugged free energy curves,

especially in flat regions, it is most efficient in a rough

reconstruction of the free energy curve. We also investigate

the line broadening phenomena of a probe molecule in an

Ising-like environment as the temperature is raised up.

Although we have considered a very simple model in this

work, the model should be able to serve as a simple, but

generic one of SMS in condensed phase environments. We

believe that many of the features observed in this study

should remain generic. 

The current model is arguably the minimalist model for a

single molecule spectroscopy in complex environments.

Even so, it brings about many interesting features in SMS of

condensed phase environments, such as spectral diffusions

and line broadenings due to environments. Of course, there

are many aspects and details that are missed in this work.

For example, in this study we assumed that the probe

molecule is static. The probe molecules, however, should be

considered time-dependent in general. Also, we have assum-

ed that the interaction strengths between the probe and

lattice molecules and that between lattice molecules are the

same, and this may not be a good assumption in certain

cases. The environmental degrees of freedom can be more

complex rather than a simple two-state behavior studied in

this work. We will consider these issues as well as others in

the future study of SMS in condensed phase environments.
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