DOI QR코드

DOI QR Code

Systemic and Cell-Type Specific Profiling of Molecular Changes in Parkinson's Disease

  • Lee, Yunjong (Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Departments of Physiology, and Neurology, the Johns Hopkins University School of Medicine)
  • Received : 2012.07.16
  • Accepted : 2012.07.19
  • Published : 2012.09.30

Abstract

Parkinson's disease (PD) is a complicated neurodegenerative disorder although it is oftentimes defined by clinical motor symptoms originated from age dependent and progressive loss of dopaminergic neurons in the midbrain. The pathogenesis of PD involves dopaminergic and nondopaminergic neurons in many brain regions and the molecular mechanisms underlying the death of different cell types still remain to be elucidated. There are indications that PD causing disease processes occur in a global scale ranging from DNA to RNA, and proteins. Several PD-associated genes have been reported to play diverse roles in controlling cellular functions in different levels, such as chromatin structure, transcription, processing of mRNA, translational modulation, and posttranslational modification of proteins. The advent of quantitative high throughput screening (HTS) tools makes it possible to monitor systemic changes in DNA, RNA and proteins in PD models. Combined with dopamine neuron isolation or derivation of dopamine neurons from PD patient specific induced pluripotent stem cells (PD iPSCs), HTS techonologies will provide opportunities to draw PD causing sequences of molecular events in pathologically relevant PD samples. Here I discuss previous studies that identified molecular functions in which PD genes are involved, especially those signaling pathways that can be efficiently studied using HTS methodologies. Brief descriptions of quantitative and systemic tools looking at DNA, RNA and proteins will be followed. Finally, I will emphasize the use and potential benefits of PD iPSCs-derived dopaminergic neurons to screen signaling pathways that are initiated by PD linked gene mutations and thus causative for dopaminergic neurodegneration in PD.

Keywords

References

  1. Lang, A.E., and Lozano, A.M. (1998). Parkinson's disease. First of two parts. N Engl J Med 339, 1044-1053. https://doi.org/10.1056/NEJM199810083391506
  2. Lang, A.E., and Lozano, A.M. (1998). Parkinson's disease. Second of two parts. N Engl J Med 339, 1130-1143. https://doi.org/10.1056/NEJM199810153391607
  3. Moore, D.J., West, A.B., Dawson, V.L., and Dawson, T.M. (2005). Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci 28, 57-87. https://doi.org/10.1146/annurev.neuro.28.061604.135718
  4. Dawson, T.M., and Dawson, V.L. (2003). Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest 111, 145-151. https://doi.org/10.1172/JCI200317575
  5. Cookson, M.R. (2003). Parkin's substrates and the pathways leading to neuronal damage. Neuromolecular Med 3, 1-13. https://doi.org/10.1385/NMM:3:1:1
  6. Cookson, M.R., Dauer, W., Dawson, T., Fon, E.A., Guo, M., and Shen, J. (2007). The roles of kinases in familial Parkinson's disease. J Neurosci 27, 11865-11868. https://doi.org/10.1523/JNEUROSCI.3695-07.2007
  7. Chu, C.T. (2010). Tickled PINK1: mitochondrial homeostasis and autophagy in recessive Parkinsonism. Biochim Biophys Acta 1802, 20-28. https://doi.org/10.1016/j.bbadis.2009.06.012
  8. Imai, Y., Soda, M., and Takahashi, R. (2000). Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 275, 35661-35664. https://doi.org/10.1074/jbc.C000447200
  9. Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., and Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608. https://doi.org/10.1038/33416
  10. Ko, H.S., von Coelln, R., Sriram, S.R., Kim, S.W., Chung, K.K., Pletnikova, O., Troncoso, J., Johnson, B., Saffary, R., Goh, E.L., et al. (2005). Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J Neurosci 25, 7968-7978. https://doi.org/10.1523/JNEUROSCI.2172-05.2005
  11. Shin, J.H., Ko, H.S., Kang, H., Lee, Y., Lee, Y.I., Pletinkova, O., Troconso, J.C., Dawson, V.L., and Dawson, T.M. (2011). PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 144, 689-702. https://doi.org/10.1016/j.cell.2011.02.010
  12. da Costa, C.A., Sunyach, C., Giaime, E., West, A., Corti, O., Brice, A., Safe, S., Abou-Sleiman, P.M., Wood, N.W., Takahashi, H., et al. (2009). Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nat Cell Biol 11, 1370-1375. https://doi.org/10.1038/ncb1981
  13. Chung, K.K., Thomas, B., Li, X., Pletnikova, O., Troncoso, J.C., Marsh, L., Dawson, V.L., and Dawson, T.M. (2004). S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304, 1328-1331. https://doi.org/10.1126/science.1093891
  14. Ko, H.S., Lee, Y., Shin, J.H., Karuppagounder, S.S., Gadad, B.S., Koleske, A.J., Pletnikova, O., Troncoso, J.C., Dawson, V.L., and Dawson, T.M. (2010). Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function. Proc Natl Acad Sci U S A 107, 16691-16696. https://doi.org/10.1073/pnas.1006083107
  15. Imam, S.Z., Zhou, Q., Yamamoto, A., Valente, A.J., Ali, S.F., Bains, M., Roberts, J.L., Kahle, P.J., Clark, R.A., and Li, S. (2011). Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease. J Neurosci 31, 157-163. https://doi.org/10.1523/JNEUROSCI.1833-10.2011
  16. Liu, J., Chung, H.J., Vogt, M., Jin, Y., Malide, D., He, L., Dundr, M., and Levens, D. (2011). JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress. EMBO J 30, 846-858. https://doi.org/10.1038/emboj.2011.11
  17. Rothfuss, O., Fischer, H., Hasegawa, T., Maisel, M., Leitner, P., Miesel, F., Sharma, M., Bornemann, A., Berg, D., Gasser, T., et al. (2009). Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum Mol Genet 18, 3832-3850. https://doi.org/10.1093/hmg/ddp327
  18. Forno, L.S. (1987). The Lewy body in Parkinson's disease. Adv Neurol 45, 35-43.
  19. Conway, K.A., Harper, J.D., and Lansbury, P.T. (1998). Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4, 1318-1320. https://doi.org/10.1038/3311
  20. Iwatsubo, T. (2007). Pathological biochemistry of alpha-synucleinopathy. Neuropathology 27, 474-478. https://doi.org/10.1111/j.1440-1789.2007.00785.x
  21. Olzscha, H., Schermann, S.M., Woerner, A.C., Pinkert, S., Hecht, M.H., Tartaglia, G.G., Vendruscolo, M., Hayer-Hartl, M., Hartl, F.U., and Vabulas, R.M. (2011). Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67-78. https://doi.org/10.1016/j.cell.2010.11.050
  22. Jellinger, K.A. (2003). Neuropathological spectrum of synucleinopathies. Mov Disord 18 Suppl 6, S2-12.
  23. Wakabayashi, K., Tanji, K., Mori, F., and Takahashi, H. (2007). The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 27, 494-506. https://doi.org/10.1111/j.1440-1789.2007.00803.x
  24. Cabeza-Arvelaiz, Y., Fleming, S.M., Richter, F., Masliah, E., Chesselet, M.F., and Schiestl, R.H. (2011). Analysis of striatal transcriptome in mice overexpressing human wild-type alpha-synuclein supports synaptic dysfunction and suggests mechanisms of neuroprotection for striatal neurons. Mol Neurodegener 6, 83. https://doi.org/10.1186/1750-1326-6-83
  25. Speciale, S.G. (2002). MPTP: insights into parkinsonian neurodegeneration. Neurotoxicol Teratol 24, 607-620. https://doi.org/10.1016/S0892-0362(02)00222-2
  26. Mandir, A.S., Przedborski, S., Jackson-Lewis, V., Wang, Z.Q., Simbulan- Rosenthal, C.M., Smulson, M.E., Hoffman, B.E., Guastella, D.B., Dawson, V.L., and Dawson, T.M. (1999). Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A 96, 5774- 5779. https://doi.org/10.1073/pnas.96.10.5774
  27. Pallanck, L., and Greenamyre, J.T. (2006). Neurodegenerative disease: pink, parkin and the brain. Nature 441, 1058. https://doi.org/10.1038/4411058a
  28. Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J.M., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161. https://doi.org/10.1038/nature04788
  29. Tan, J.M., and Dawson, T.M. (2006). Parkin blushed by PINK1. Neuron 50, 527-529. https://doi.org/10.1016/j.neuron.2006.05.003
  30. Kwok, J.B. (2010). Role of epigenetics in Alzheimer's and Parkinson's disease. Epigenomics 2, 671-682. https://doi.org/10.2217/epi.10.43
  31. Habibi, E., Masoudi-Nejad, A., Abdolmaleky, H.M., and Haggarty, S.J. (2011). Emerging roles of epigenetic mechanisms in Parkinson's disease. Funct Integr Genomics 11, 523-537. https://doi.org/10.1007/s10142-011-0246-z
  32. Marques, S.C., Oliveira, C.R., Pereira, C.M., and Outeiro, T.F. (2011). Epigenetics in neurodegeneration: a new layer of complexity. Prog Neuropsychopharmacol Biol Psychiatry 35, 348-355. https://doi.org/10.1016/j.pnpbp.2010.08.008
  33. Kaut, O., Schmitt, I., and Wullner, U. (2012). Genome-scale methylation analysis of Parkinson's disease patients' brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics 13, 87-91. https://doi.org/10.1007/s10048-011-0308-3
  34. Jowaed, A., Schmitt, I., Kaut, O., and Wullner, U. (2010). Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains. J Neurosci 30, 6355-6359. https://doi.org/10.1523/JNEUROSCI.6119-09.2010
  35. Xu, K., Dai, X.L., Huang, H.C., and Jiang, Z.F. (2011). Targeting HDACs: a promising therapy for Alzheimer's disease. Oxid Med Cell Longev 2011, 143269.
  36. Brochier, C., Gaillard, M.C., Diguet, E., Caudy, N., Dossat, C., Segurens, B., Wincker, P., Roze, E., Caboche, J., Hantraye, P., et al. (2008). Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models. Physiol Genomics 33, 170-179. https://doi.org/10.1152/physiolgenomics.00125.2007
  37. Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10, 57-63. https://doi.org/10.1038/nrg2484
  38. Duke, D.C., Moran, L.B., Kalaitzakis, M.E., Deprez, M., Dexter, D.T., Pearce, R.K., and Graeber, M.B. (2006). Transcriptome analysis reveals link between proteasomal and mitochondrial pathways in Parkinson's disease. Neurogenetics 7, 139-148. https://doi.org/10.1007/s10048-006-0033-5
  39. Gillardon, F., Mack, M., Rist, W., Schnack, C., Lenter, M., Hildebrandt, T., and Hengerer, B. (2008). MicroRNA and proteome expression profiling in early-symptomatic alpha-synuclein(A30P)-transgenic mice. Proteomics Clin Appl 2, 697-705. https://doi.org/10.1002/prca.200780025
  40. Seo, J., and Lee, K.J. (2004). Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 37, 35-44. https://doi.org/10.5483/BMBRep.2004.37.1.035
  41. Moore, D.J. (2006). Parkin: a multifaceted ubiquitin ligase. Biochem Soc Trans 34, 749-753. https://doi.org/10.1042/BST0340749
  42. Vasilescu, J., Smith, J.C., Ethier, M., and Figeys, D. (2005). Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. J Proteome Res 4, 2192-2200. https://doi.org/10.1021/pr050265i
  43. Dawson, T.M. (2006). Parkin and defective ubiquitination in Parkinson's disease. J Neural Transm Suppl, 209-213.
  44. Choi, J.W., Um, J.Y., Kundu, J.K., Surh, Y.J., and Kim, S. (2009). Multidirectional tumor-suppressive activity of AIMP2/p38 and the enhanced susceptibility of AIMP2 heterozygous mice to carcinogenesis. Carcinogenesis 30, 1638-1644. https://doi.org/10.1093/carcin/bgp170
  45. Hwang, S.I., Lundgren, D.H., Mayya, V., Rezaul, K., Cowan, A.E., Eng, J.K., and Han, D.K. (2006). Systematic characterization of nuclear proteome during apoptosis: a quantitative proteomic study by differential extraction and stable isotope labeling. Mol Cell Proteomics 5, 1131-1145. https://doi.org/10.1074/mcp.M500162-MCP200
  46. Doherty, M.K., Hammond, D.E., Clague, M.J., Gaskell, S.J., and Beynon, R.J. (2009). Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J Proteome Res 8, 104-112. https://doi.org/10.1021/pr800641v
  47. West, A.B., Moore, D.J., Biskup, S., Bugayenko, A., Smith, W.W., Ross, C.A., Dawson, V.L., and Dawson, T.M. (2005). Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 102, 16842-16847. https://doi.org/10.1073/pnas.0507360102
  48. Smith, W.W., Pei, Z., Jiang, H., Dawson, V.L., Dawson, T.M., and Ross, C.A. (2006). Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 9, 1231-1233. https://doi.org/10.1038/nn1776
  49. Lee, B.D., Shin, J.H., VanKampen, J., Petrucelli, L., West, A.B., Ko, H.S., Lee, Y.I., Maguire-Zeiss, K.A., Bowers, W.J., Federoff, H.J., et al. (2010). Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nat Med 16, 998-1000. https://doi.org/10.1038/nm.2199
  50. Lin, X., Parisiadou, L., Gu, X.L., Wang, L., Shim, H., Sun, L., Xie, C., Long, C.X., Yang, W.J., Ding, J., et al. (2009). Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson'sdisease- related mutant alpha-synuclein. Neuron 64, 807-827. https://doi.org/10.1016/j.neuron.2009.11.006
  51. Tong, Y., and Shen, J. (2009). Alpha-synuclein and LRRK2: partners in crime. Neuron 64, 771-773. https://doi.org/10.1016/j.neuron.2009.12.017
  52. Gehrke, S., Imai, Y., Sokol, N., and Lu, B. (2010). Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466, 637-641. https://doi.org/10.1038/nature09191
  53. Pridgeon, J.W., Olzmann, J.A., Chin, L.S., and Li, L. (2007). PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5, e172. https://doi.org/10.1371/journal.pbio.0050172
  54. Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R.L., Kim, J., May, J., Tocilescu, M.A., Liu, W., Ko, H.S., et al. (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107, 378-383. https://doi.org/10.1073/pnas.0911187107
  55. Whitworth, A.J., and Pallanck, L.J. (2009). The PINK1/Parkin pathway: a mitochondrial quality control system? J Bioenerg Biomembr 41, 499-503. https://doi.org/10.1007/s10863-009-9253-3
  56. Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P., and Youle, R.J. (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191, 933-942. https://doi.org/10.1083/jcb.201008084
  57. Lin, W., and Kang, U.J. (2008). Characterization of PINK1 processing, stability, and subcellular localization. J Neurochem 106, 464-474. https://doi.org/10.1111/j.1471-4159.2008.05398.x
  58. Moriwaki, Y., Kim, Y.J., Ido, Y., Misawa, H., Kawashima, K., Endo, S., and Takahashi, R. (2008). L347P PINK1 mutant that fails to bind to Hsp90/ Cdc37 chaperones is rapidly degraded in a proteasome-dependent manner. Neurosci Res 61, 43-48. https://doi.org/10.1016/j.neures.2008.01.006
  59. Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376-386. https://doi.org/10.1074/mcp.M200025-MCP200
  60. Krijgsveld, J., Ketting, R.F., Mahmoudi, T., Johansen, J., Artal-Sanz, M., Verrijzer, C.P., Plasterk, R.H., and Heck, A.J. (2003). Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21, 927-931. https://doi.org/10.1038/nbt848
  61. Kruger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C.A., Forner, F., Schmidt, S., Zanivan, S., Fassler, R., and Mann, M. (2008). SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134, 353-364. https://doi.org/10.1016/j.cell.2008.05.033
  62. de Godoy, L.M., Olsen, J.V., de Souza, G.A., Li, G., Mortensen, P., and Mann, M. (2006). Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol 7, R50.
  63. Seibler, P., Graziotto, J., Jeong, H., Simunovic, F., Klein, C., and Krainc, D. (2011). Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci 31, 5970-5976. https://doi.org/10.1523/JNEUROSCI.4441-10.2011
  64. Basso, M., Giraudo, S., Corpillo, D., Bergamasco, B., Lopiano, L., and Fasano, M. (2004). Proteome analysis of human substantia nigra in Parkinson's disease. Proteomics 4, 3943-3952. https://doi.org/10.1002/pmic.200400848
  65. Gibson, B.W. (2005). The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation. Int J Biochem Cell Biol 37, 927-934. https://doi.org/10.1016/j.biocel.2004.11.013
  66. Lu, L., Neff, F., Alvarez-Fischer, D., Henze, C., Xie, Y., Oertel, W.H., Schlegel, J., and Hartmann, A. (2005). Gene expression profiling of Lewy body-bearing neurons in Parkinson's disease. Exp Neurol 195, 27-39. https://doi.org/10.1016/j.expneurol.2005.04.011
  67. Greene, J.G., Dingledine, R., and Greenamyre, J.T. (2010). Neuron-selective changes in RNA transcripts related to energy metabolism in toxic models of parkinsonism in rodents. Neurobiol Dis 38, 476-481. https://doi.org/10.1016/j.nbd.2010.03.014
  68. Stephenson, D., Ramirez, A., Long, J., Barrezueta, N., Hajos-Korcsok, E., Matherne, C., Gallagher, D., Ryan, A., Ochoa, R., Menniti, F., et al. (2007). Quantification of MPTP-induced dopaminergic neurodegeneration in the mouse substantia nigra by laser capture microdissection. J Neurosci Methods 159, 291-299. https://doi.org/10.1016/j.jneumeth.2006.07.027
  69. Heiman, M., Schaefer, A., Gong, S., Peterson, J.D., Day, M., Ramsey, K.E., Suarez-Farinas, M., Schwarz, C., Stephan, D.A., Surmeier, D.J., et al. (2008). A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738-748. https://doi.org/10.1016/j.cell.2008.10.028
  70. Valjent, E., Bertran-Gonzalez, J., Herve, D., Fisone, G., and Girault, J.A. (2009). Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci 32, 538-547. https://doi.org/10.1016/j.tins.2009.06.005
  71. Park, C.H., Minn, Y.K., Lee, J.Y., Choi, D.H., Chang, M.Y., Shim, J.W., Ko, J.Y., Koh, H.C., Kang, M.J., Kang, J.S., et al. (2005). In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J Neurochem 92, 1265-1276. https://doi.org/10.1111/j.1471-4159.2004.03006.x
  72. Sonntag, K.C., Simantov, R., and Isacson, O. (2005). Stem cells may reshape the prospect of Parkinson's disease therapy. Brain Res Mol Brain Res 134, 34-51. https://doi.org/10.1016/j.molbrainres.2004.09.002
  73. Takahashi, J. (2006). Stem cell therapy for Parkinson's disease. Ernst Schering Res Found Workshop, 60, 229-244. https://doi.org/10.1007/3-540-31437-7_15
  74. Gunaseeli, I., Doss, M.X., Antzelevitch, C., Hescheler, J., and Sachinidis, A. (2010). Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Curr Med Chem 17, 759-766. https://doi.org/10.2174/092986710790514480
  75. Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810-813. https://doi.org/10.1038/385810a0
  76. Egli, D., and Eggan, K. (2010). Recipient cell nuclear factors are required for reprogramming by nuclear transfer. Development 137, 1953- 1963. https://doi.org/10.1242/dev.046151
  77. Yamanaka, S. (2008). Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif 41 Suppl 1, 51-56.
  78. Lo, B., and Parham, L. (2009). Ethical issues in stem cell research. Endocr Rev 30, 204-213. https://doi.org/10.1210/er.2008-0031
  79. Linazasoro, G. (2003). Stem cells: solution to the problem of transplants in Parkinson's disease? Neurologia 18, 74-100.
  80. Fukuda, H., Takahashi, J., Watanabe, K., Hayashi, H., Morizane, A., Koyanagi, M., Sasai, Y., and Hashimoto, N. (2006). Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells 24, 763-771. https://doi.org/10.1634/stemcells.2005-0137
  81. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85, 348-362. https://doi.org/10.2183/pjab.85.348
  82. Kriks, S., Shim, J.W., Piao, J., Ganat, Y.M., Wakeman, D.R., Xie, Z., Carrillo- Reid, L., Auyeung, G., Antonacci, C., Buch, A., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480, 547-551.
  83. Sanchez-Danes, A., Consiglio, A., Richaud, Y., Rodriguez-Piza, I., Dehay, B., Edel, M., Bove, J., Memo, M., Vila, M., Raya, A., et al. (2012). Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells. Hum Gene Ther 23, 56-69. https://doi.org/10.1089/hum.2011.054
  84. Hedlund, E., Pruszak, J., Ferree, A., Vinuela, A., Hong, S., Isacson, O., and Kim, K.S. (2007). Selection of embryonic stem cell-derived enhanced green fluorescent protein-positive dopamine neurons using the tyrosine hydroxylase promoter is confounded by reporter gene expression in immature cell populations. Stem Cells 25, 1126-1135. https://doi.org/10.1634/stemcells.2006-0540
  85. Pruszak, J., Just, L., Isacson, O., and Nikkhah, G. (2009). Isolation and culture of ventral mesencephalic precursor cells and dopaminergic neurons from rodent brains. Curr Protoc Stem Cell Biol Chapter 2, Unit 2D 5.
  86. Pruszak, J., Sonntag, K.C., Aung, M.H., Sanchez-Pernaute, R., and Isacson, O. (2007). Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells 25, 2257-2268. https://doi.org/10.1634/stemcells.2006-0744
  87. Placantonakis, D.G., Tomishima, M.J., Lafaille, F., Desbordes, S.C., Jia, F., Socci, N.D., Viale, A., Lee, H., Harrison, N., Tabar, V., et al. (2009). BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage. Stem Cells 27, 521-532. https://doi.org/10.1634/stemcells.2008-0884
  88. Byers, B., Cord, B., Nguyen, H.N., Schule, B., Fenno, L., Lee, P.C., Deisseroth, K., Langston, J.W., Pera, R.R., and Palmer, T.D. (2011). SNCA triplication Parkinson's patient's iPSC-derived DA neurons accumulate alpha-synuclein and are susceptible to oxidative stress. PLoS One 6, e26159. https://doi.org/10.1371/journal.pone.0026159
  89. Nguyen, H.N., Byers, B., Cord, B., Shcheglovitov, A., Byrne, J., Gujar, P., Kee, K., Schule, B., Dolmetsch, R.E., Langston, W., et al. (2011). LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267-280. https://doi.org/10.1016/j.stem.2011.01.013
  90. Jiang, H., Ren, Y., Yuen, E.Y., Zhong, P., Ghaedi, M., Hu, Z., Azabdaftari, G., Nakaso, K., Yan, Z., and Feng, J. (2012). Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun 3, 668. https://doi.org/10.1038/ncomms1669
  91. Soldner, F., Laganiere, J., Cheng, A.W., Hockemeyer, D., Gao, Q., Alagappan, R., Khurana, V., Golbe, L.I., Myers, R.H., Lindquist, S., et al. (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146, 318-331. https://doi.org/10.1016/j.cell.2011.06.019