DOI QR코드

DOI QR Code

Geft is dispensable for the development of the second heart field

  • Fan, Xiongwei (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Hou, Ning (State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology) ;
  • Fan, Kaiji (State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology) ;
  • Yuan, Jiajia (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Mo, Xiaoyang (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Deng, Yun (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Wan, Yongqi (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University) ;
  • Teng, Yan (State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology) ;
  • Yang, Xiao (State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology) ;
  • Wu, Xiushan (The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University)
  • Received : 2011.09.23
  • Accepted : 2011.10.29
  • Published : 2012.03.31

Abstract

Geft is a guanine nucleotide exchange factor, which can specifically activate Rho family of small GTPase by catalyzing the exchange of bound GDP for GTP. Geft is highly expressed in the excitable tissue as heart and skeletal muscle and plays important roles in many cellular processes, such as cell proliferation, migration, and cell fate decision. However, the in vivo role of Geft remains unknown. Here, we generated a Geft conditional knockout mouse by flanking exons 5-17 of Geft with loxP sites. Cre-mediated deletion of the Geft gene in heart using Mef2c-Cre transgenic mice resulted in a dramatic decrease of Geft expression. Geft knockout mice develop normally and exhibit no discernable phenotype, suggesting Geft is dispensable for the development of the second heart field in mouse. The Geft conditional knockout mouse will be a valuable genetic tool for uncovering the in vivo roles of Geft during development and in adult homeostasis.

Keywords

References

  1. Linseman, D. A. and Loucks, F. A. (2008) Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front Biosci. 13, 657-676. https://doi.org/10.2741/2710
  2. Primeau, M. and Lamarche-Vane, N. (2008) A brief overview of the small Rho GTPases. Med. Sci. 24,157-162.
  3. Spindler, V., Schlegel, N. and Waschke, J. (2010) Role of GTPases in control of microvascular permeability. Cardiovasc. Res. 87, 243-253. https://doi.org/10.1093/cvr/cvq086
  4. Samuel, F. and Hynds, D. L. (2010) RHO GTPase signaling for axon extension: is prenylation important? Mol. Neurobiol. 42, 133-142. https://doi.org/10.1007/s12035-010-8144-2
  5. Lazer, G. and Katzav, S. (2011) Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy? Cell Signal. 23, 969-979. https://doi.org/10.1016/j.cellsig.2010.10.022
  6. Wei, L., Imanaka-Yoshida, K., Wang, L., Zhan, S., Schneider, M. D., DeMayo, F. J. and Schwartz, R. J. (2002) Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts. Development 129, 1705-1714.
  7. Sussman, M. A., Welch, S., Walker, A., Klevitsky, R., Hewett, T. E., Price, R. L., Schaefer, E. and Yager, K. (2000) Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J. Clin. Invest. 105, 875-886. https://doi.org/10.1172/JCI8497
  8. Raeker, M. O., Bieniek, A. N., Ryan, A. S., Tsai, H. J., Zahn, K. M. and Russell, M. W. (2010) Targeted deletion of the zebrafish obscurin A RhoGEF domain affects heart, skeletal muscle and brain development. Dev. Biol. 337, 432-443. https://doi.org/10.1016/j.ydbio.2009.11.018
  9. Mayers, C. M., Wadell, J., McLean, K., Venere, M., Malik, M., Shibata, T., Driggers, P. H., Kino, T., Guo, X. C., Koide, H., Gorivodsky, M., Grinberg, A., Mukhopadhyay, M., Abu-Asab, M., Westphal, H. and Segars, J. H. (2010) The Rho guanine nucleotide exchange factor AKAP13 (BRX) is essential for cardiac development in mice. J. Biol. Chem. 285, 12344-12354. https://doi.org/10.1074/jbc.M110.106856
  10. Guo, X., Stafford, L. J., Bryan, B., Xia, C., Ma, W., Wu, X., Liu, D., Songyang, Z. and Liu, M. (2003) A Rac/Cdc42- specific exchange factor, Geft, Induces cell proliferation, transformation, and migration. J. Biol. Chem. 278, 13207-13215. https://doi.org/10.1074/jbc.M208896200
  11. Schmidt, A. and Hall, A. (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587-1609. https://doi.org/10.1101/gad.1003302
  12. Bryan, B. A., Mitchell, D. C., Zhao, L., Ma, W., Stafford, L. J., Teng, B. B. and Liu, M. (2005) Modulation of muscle regeneration, myogenesis, and adipogenesis by the Rho family guanine nucleotide exchange factor GEFT. Mol. Cell. Biol. 25, 11089-11101. https://doi.org/10.1128/MCB.25.24.11089-11101.2005
  13. Bryan, B., Kumar, V., Stafford, L. J., Cai, Y., Wu, G. and Liu, M. (2004) GEFT, A Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. J. Biol. Chem. 279, 45824-45832. https://doi.org/10.1074/jbc.M406216200
  14. Lutz, S., Shankaranarayanan, A., Coco, C., Ridilla, M., Nance, M. R., Vettel, C., Baltus, D., Evelyn, C. R., Neubig, R. R., Wieland, T. and Tesmer, J. J. (2007) Structure of Gaq-p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Science 318, 1923-1927. https://doi.org/10.1126/science.1147554
  15. Rojas, R. J., Yohe, M. E., Gershburg, S., Kawano, T., Kozasa, T. and Sondek, J. (2007) $G{\alpha}q$ directly activates p63RhoGEF and Trio via a conserved extension of the Dbl homology-associated pleckstrin homology domain. J. Biol. Chem. 282, 29201-29210. https://doi.org/10.1074/jbc.M703458200
  16. Liu, P., Jenkins, N. A. and Copeland, N. G. (2003) A highly efficient recombineering-based method for generating. Genome Res. 13, 476-484. https://doi.org/10.1101/gr.749203
  17. Farley, F. W., Soriano, P., Steffen, L. S. and Dymecki, S. M. (2000) Widespread recombinase expression using FLPeR (Flipper) mice. Genesis 28, 106-110. https://doi.org/10.1002/1526-968X(200011/12)28:3/4<106::AID-GENE30>3.0.CO;2-T
  18. Verzi, M. P., McCulley, D. J., De Val, S., Dodou, E. and Black, B. L. (2005) The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev. Biol. 287, 134-145. https://doi.org/10.1016/j.ydbio.2005.08.041
  19. Prall, O. W., Menon, M. K., Solloway, M. J., Watanabe, Y., Zaffran, S., Bajolle, F., Biben, C., McBride, J. J., Robertson, B. R., Chaulet, H., Stennard, F. A., Wise, N., Schaft, D., Wolstein, O., Furtado, M. B., Shiratori, H., Chien, K. R., Hamada, H., Black, B. L., Saga, Y., Robertson, E. J., Buckingham, M. E. and Harvey, R. P. (2007) An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128, 947-959. https://doi.org/10.1016/j.cell.2007.01.042
  20. Curtis, C., Hemmeryckx, B., Haataja, L., Senadheera, D., Groffen, J. and Heisterkamp, N. (2004) Scambio, a novel guanine nucleotide exchange factor for Rho. Mol. Cancer 23, 10.
  21. Blomquist, A., Schworer, G., Schablowski, H., Psoma, A., Lehnen, M., Jakobs, K. H., and Rumenapp, U. (2000) Identification and characterization of a novel Rho-specific guanine nucleotide exchange factor. Biochem. J. 352, 319-325. https://doi.org/10.1042/0264-6021:3520319
  22. Himmel, K. L., Bi, F., Shen, H., Jenkins, N. A., Copeland N. G., Zheng, Y., and Largaespada, D. A. (2002) Activation of clg, a novel dbl family guanine nucleotide exchange factor gene, by proviral insertion at evi24, a common integration site in B cell and myeloid leukemias. J. Biol. Chem. 277, 13463-13472. https://doi.org/10.1074/jbc.M110981200
  23. Debant, A., Serra-Pages, C., Seipel, K., O'Brien, S., Tang, M., Park, S. H. and Streuli, M. (1996) The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc. Natl. Acad. Sci. U.S.A. 93, 5466-5471. https://doi.org/10.1073/pnas.93.11.5466
  24. Lezoualc'h, F., Metrich, M., Hmitou, I., Duquesnes, N. and Morel, E. (2008) Small GTP-binding proteins and their regulators in cardiac hypertrophy. J. Mol. Cell. Cardiol. 44, 623-632. https://doi.org/10.1016/j.yjmcc.2008.01.011
  25. Yang, X., Li, C., Herrera, P. L. and Deng, C. X. (2002) Generation of Smad4/Dpc4 conditional knochout mice. Genesis 32, 81-82.
  26. Li, F., Lan, Y., Wang, Y., Wang, J., Yang, G., Meng, F., Han, H., Meng, A., Wang, Y. and Yang, X. (2011) Endothelial smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev. Cell. 20, 291-302. https://doi.org/10.1016/j.devcel.2011.01.011
  27. Guo, S. L., Peng, Z., Yang, X., Fan, K. J., Ye, H., Li, Z. H., Wang, Y., Xu, X. L., Li, J., Wang, Y. L., Teng, Y. and Yang, X. (2011) miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int. J. Biol. Sci. 7, 567-574. https://doi.org/10.7150/ijbs.7.567
  28. Wang, J., Xu, N., Feng, X., Hou, N., Zhang, J., Cheng, X., Chen, Y., Zhang, Y. and Yang, X. (2005) Targeted disruption of Smad4 in cardiomyocytes results in cardiac hypertrophy and heart failure. Circ. Res. 97, 821-828. https://doi.org/10.1161/01.RES.0000185833.42544.06