DOI QR코드

DOI QR Code

Identification of anti-HIV and anti-Reverse Transcriptase activity from Tetracera scandens

  • Kwon, Hyeok-Sang (National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea) ;
  • Park, Jung-Ae (National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea) ;
  • Kim, Joo-Hwan (Department of Life Science, College of Natural Science, Kyung Won University) ;
  • You, Ji-Chang (National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea)
  • Received : 2011.11.29
  • Accepted : 2011.12.02
  • Published : 2012.03.31

Abstract

We report here that an ethanol extract of Tetracera scandens, a Vietnamese medicinal plant, has anti-HIV activity and possesses strong inhibitory activity against HIV-1 reverse transcriptase (RTase). Using a MT-4 cell-based assay, we found that the T. scandens extract inhibited effectively HIV virus replication with an $IC_{50}$ value in the range of 2.0-2.5 ${\mu}g$/ml while the cellular toxicity value (CC50) was more than 40-50 ${\mu}g$/ml concentration, thus yielding a minimum specificity index of 20-fold. Moreover, the anti-HIV efficacy of the T. scandens extract was determined to be due, in part, to its potent inhibitory activity against HIV-1 RTase activity in vitro. The inhibitory activity against the RTase was further confirmed by probing viral cDNA production, an intermediate of viral reverse transcription, in virus-infected cells using quantitative DNA-PCR analysis. Thus, these results suggest that T. scandens can be a useful source for the isolation and development of new anti-HIV-1 inhibitor(s).

Keywords

References

  1. Feng, J. Y., Ly, J. K., Myrick, F., Goodman, D., White, K. L., Svarovskaia, E. S., Borroto, K. and Miller, M. D. (2009) The triple combination of tenofovir, emtricitabine and efavirenz shows synergistic anti-HIV-1 activity in vitro: a mechanism of action study. Retrovirology 6, 44. https://doi.org/10.1186/1742-4690-6-44
  2. King, R. W. King, klabe, R. M., Reid, C. D. and Erickson- Viitanen, S. K. (2002) Potency of nonnucleoside reverse transcriptase inhibitors (NNRTIs) used in combination with other human immunodeficiency virus NNRTIs, NRTIs, or protease inhibitors. Antimicrob. Agents Chemother 46, 1640-1646. https://doi.org/10.1128/AAC.46.6.1640-1646.2002
  3. Dierynck, I., De Wit, M., Gustin, E., Keuleers, I., Vandersmissen, J., Hallenverger, S. and Hertogs, K. (2007) Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier. J. Virol. 81, 13845-13851. https://doi.org/10.1128/JVI.01184-07
  4. Blanco, J. L., Varghese, V., Rhee, S. Y., Gatell, G. M. and Shafer, R. W. (2011) HIV-1 integrase inhibitor resistance and its clinical implications. J. Infect. Dis. 203, 1204-1214. https://doi.org/10.1093/infdis/jir025
  5. Ji, C., Kopetzki, E., Jekle, A., Stubenrauch, K. G., Liu, X., Zhang, J., Rao, E., Schlothauer, T., Fischer, S., Cammack, N., Heilek, Ries, S. and Sankuratri, S. (2009) CD4-anchoring HIV-1 fusion inhibitor with enhanced potency and in vivo stability. J. Biol. Chem. 284, 5175-5185. https://doi.org/10.1074/jbc.M808745200
  6. Zhou, N., Nowicka-Sans, B., Zhang, S., Fna, L., Fang, J., Fang, H., Eggers, B., Fanglet, D. R., Wang, T., Kadow, J., Grasela, D., Hanna, G. J., Alexander, L., Colonno, R., Krystal, M. and Lin, P. F. (2011) In vivo patterns of resistance to the HIV attachment inhibitor BMS-488043. Antimicrob. Agents Chemother 55, 729-737. https://doi.org/10.1128/AAC.01173-10
  7. Adamson, C. S., Ablan, S. D., Boeras, I., Goila-Gaur, R., Soheilian, F., Nagashima, K., Li, F., Salzwedel, K., Sakalian, M., Wild, C. T. and Freed, E. O. (2006) In vitro resistance to the human immunodeficiency virus type 1 maturation inhibitor PA-457 (Bevirimat). J. Virol. 80, 10957-10971. https://doi.org/10.1128/JVI.01369-06
  8. Adamson, C. S., Waki, K., Ablan, S. D., Salzwedel, K. and Freed, E. O. (2009) Impact of human immunodeficiency virus type 1 resistance to protease inhibitors on evolution of resistance to the maturation inhibitor bevirimat (PA-457). J. Virol. 83, 4884-4894. https://doi.org/10.1128/JVI.02659-08
  9. Latinovic, O., Kuruppu, J., Dacis, C., Le, N. and Heredia, A. (2009) Pharmacotherapy of HIV-1 Infection: Focus on CCR5 Antagonist Maraviroc. Clin. Med. Ther. 1, 1497-1510.
  10. Hupfeld, J. and Efferth, T. (2009) Review. Drug resistance of human immunodeficiency virus and overcoming it by natural products. In Vivo 23, 1-6.
  11. Yogeeswari, P. and Sriram, D. (2005) Betulinic acid and its derivatives: a review on their biological properties. Curr. Med. Chem. 12, 657-666. https://doi.org/10.2174/0929867053202214
  12. Fujioka, T., Kashiwada, Y., Kikuskie, R. E., Cosentino, L. M., Ballas, L. M., Jiang, J. B., Janzen, W. P., Chen, I. S. and Lee, K. H. (1994) Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J. Nat. Prod. 57, 243-247. https://doi.org/10.1021/np50104a008
  13. Kashman, Y., Gustafson, K. R., Fuller, R. W., Cardellina, J. H., McMahon, J. B., Currends, M. J., Buckheit, R. W., Jr., Hughes, S. H., Cragg, G. M. and Boyd, M. R. (1992) The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J. Med. Chem. 35, 2735-2743. https://doi.org/10.1021/jm00093a004
  14. Johnson, S. C. and Gerber, J. G. (2000) Advances in HIV/AIDS therapy. Adv. Intern. Med. 45, 1-40.
  15. Notka, F., Meier, G. and Wagner, R. (2004) Concerted inhibitory activities of Phyllanthus amarus on HIV replication in vitro and ex vivo. Antiviral. Res. 64, 93-102.
  16. Zhu, H. (1992) The tropical rainforest vegetation in Xishuangbanna. Chinese Geographical Science. 2, 64-73. https://doi.org/10.1007/BF02664547
  17. Lee, M. S., Kim, C. H., Hoang, D. M., Kim, B. Y., Sohn, C. B., Kim, M. R. and Ahn, J. S. (2009) Genistein-derivatives from Tetracera scandens stimulate glucose-uptake in L6 myotubes. Biol. Pharm. Bull. 32, 504-508. https://doi.org/10.1248/bpb.32.504
  18. Umar, A., Ahmed, Q. U., Muhammad, B. Y., Dogarai, B, B and Soad, S. Z. (2010) Anti-hyperglycemic activity of the leaves of Tetracera scandens Linn. Merr. (Dilleniaceae) in alloxan induced diabetic rats. J. Ethnopharmacol. 131, 140-145. https://doi.org/10.1016/j.jep.2010.06.016
  19. Nguyen, M. T., Awale, S., Tezuka, Y., Tran, Q. L., Watanabe, H. and Kadota, S. (2004) Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biol. Pharm. Bull. 27, 1414-1421. https://doi.org/10.1248/bpb.27.1414
  20. Ma, J., Starck, S. R. and Hecht, S. M. (1999) DNA polymerase beta inhibitors from Tetracera boiviniana. J. Nat. Prod. 62, 1660-1663. https://doi.org/10.1021/np990326p
  21. Schlaepfer, E., Audige, A., Von Beust, B., Manolova, V., Weber, M., Jollerm H., Bachemann, M. F., kundig, T. M. and Speck, R. F. (2004) CpG oligodeoxynucleotides block human immunodeficiency virus type 1 replication in human lymphoid tissue infected ex vivo. J. Virol. 78, 12344-12354. https://doi.org/10.1128/JVI.78.22.12344-12354.2004

Cited by

  1. Identification of a novel type of small molecule inhibitor against HIV-1 vol.48, pp.2, 2015, https://doi.org/10.5483/BMBRep.2015.48.2.239
  2. Mangrove-Mediated Green Synthesis of Silver Nanoparticles with High HIV-1 Reverse Transcriptase Inhibitory Potential vol.28, pp.1, 2017, https://doi.org/10.1007/s10876-016-1100-1
  3. Alkaloids from Croton echinocarpus Baill.: Anti-HIV potential vol.102, 2016, https://doi.org/10.1016/j.sajb.2015.06.011
  4. Dexamethasone induces the expression of LRRK2 and α-synuclein, two genes that when mutated cause Parkinson's disease in an autosomal dominant manner vol.46, pp.9, 2013, https://doi.org/10.5483/BMBRep.2013.46.9.234
  5. , and Their Effects on the HIV-1 Tat Protein Function vol.15, pp.2, 2018, https://doi.org/10.1002/cbdv.201700436