DOI QR코드

DOI QR Code

Sodium selenite-induced activation of DAPK promotes autophagy in human leukemia HL60 cells

  • Jiang, Qian (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences & School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Li, Feng (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences & School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Shi, Kejian (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences & School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Yang, Yang (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences & School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Xu, Caimin (National Laboratory of Medical Molecular Biology, Institute of Basic Medicine Sciences & School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences)
  • Received : 2011.10.31
  • Accepted : 2011.12.07
  • Published : 2012.03.31

Abstract

Autophagy has been suggested as a possible mechanism for non-apoptotic death despite evidence from many species that autophagy represents a survival strategy of cells under stress. From our previous findings that supranutritional doses of sodium selenite induced apoptosis in human leukemia cells, now we show autophagic cell death occurred after selenite exposure in HL60, suggested an alternative mechanism for the potential therapeutic properties of selenite. Additionally, Death-associated Protein Kinase (DAPK) performed a significantly increased expression during this process, concomitantly with gradually decreased phosphorylation at $Ser^{308}$. We further reveal that the up-regulation of DAPK which depends on selenite-activated ERK had no effect on autophagy. However, activation of DAPK via PP2A-mediated dephosphorylation at $Ser^{308}$ serves as a new strategy for autophagy induction. In conclusion, these results indicate that PP2A-mediated activated DAPK sensitizes HL60 cells to selenite, ultimately triggers autophagic cell death pathway to commit cell demise.

Keywords

References

  1. Novotny, L., Rauko, P., Kombian, S. B. and Edafiogho, I. O. (2010) Selenium as a chemoprotective anti-cancer agent: reality or wishful thinking? Neoplasma 57, 383- 391. https://doi.org/10.4149/neo_2010_05_383
  2. Zeng, H. and Combs, G. F., Jr. (2008) Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J. Nutr. Biochem. 19, 1-7. https://doi.org/10.1016/j.jnutbio.2007.02.005
  3. Bjorkhem-Bergman, L., Torndal, U. B., Eken, S., Nystrom, C., Capitanio, A., Larsen, E. H., Bjornstedt, M. and Eriksson, L. C. (2005) Selenium prevents tumor development in a rat model for chemical carcinogenesis. Carcinogenesis 26, 125-131. https://doi.org/10.1093/carcin/bgh290
  4. Lunoe, K., Gabel-Jensen, C., Sturup, S., Andresen, L., Skov, S. and Gammelgaard, B. (2011) Investigation of the selenium metabolism in cancer cell lines. Metallomics 3, 162-168. https://doi.org/10.1039/c0mt00091d
  5. Li, Z., Shi, K., Guan, L., Cao, T., Jiang, Q., Yang, Y. and Xu, C. (2010) ROS leads to MnSOD upregulation through ERK2 translocation and p53 activation in selenite-induced apoptosis of NB4 cells. FEBS Lett. 584, 2291-2297. https://doi.org/10.1016/j.febslet.2010.03.040
  6. Guan, L., Han, B., Li, Z., Hua, F., Huang, F., Wei, W., Yang, Y. and Xu, C. (2009) Sodium selenite induces apoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in human acute promyelocytic leukemia NB4 cells. Apoptosis 14, 218-225. https://doi.org/10.1007/s10495-008-0295-5
  7. Yang, Y. P., Liang, Z. Q., Gao, B., Jia, Y. L. and Qin, Z. H. (2008) Dynamic effects of autophagy on arsenic trioxide- induced death of human leukemia cell line HL60 cells. Acta. Pharmacol. Sin. 29, 123-134. https://doi.org/10.1111/j.1745-7254.2008.00732.x
  8. Jiang, Q., Wang, Y., Li, T., Shi, K., Li, Z., Ma, Y., Li, F., Luo, H., Yang, Y. and Xu, C. (2011) Heat shock protein 90-mediated inactivation of nuclear factor-kappaB switches autophagy to apoptosis through becn1 transcriptional inhibition in selenite-induced NB4 cells. Mol. Biol. Cell 22, 1167-1180. https://doi.org/10.1091/mbc.E10-10-0860
  9. Klionsky, D. J. (2010) The molecular machinery of autophagy and its role in physiology and disease. Semin. Cell Dev. Biol. 21, 663. https://doi.org/10.1016/j.semcdb.2010.04.005
  10. Paris, I., Munoz, P., Huenchuguala, S., Couve, E., Sanders, L. H., Greenamyre, J. T., Caviedes, P. and Segura- Aguilar, J. (2011) Autophagy protects against aminochrome- induced cell death in substantia nigra-derived cell line. Toxicol. Sci. 121, 376-388. https://doi.org/10.1093/toxsci/kfr060
  11. Remijsen, Q., Vanden Berghe, T., Wirawan, E., Asselbergh, B., Parthoens, E., De Rycke, R., Noppen, S., Delforge, M., Willems, J. and Vandenabeele, P. (2011) Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 21, 290- 304. https://doi.org/10.1038/cr.2010.150
  12. Zhu, Y., Zhao, L., Liu, L., Gao, P., Tian, W., Wang, X., Jin, H., Xu, H. and Chen, Q. (2010) Beclin 1 cleavage by caspase- 3 inactivates autophagy and promotes apoptosis. Protein. Cell 1, 468-477. https://doi.org/10.1007/s13238-010-0048-4
  13. Stepkowski, T. M. and Kruszewski, M. K. (2011) Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free. Radic. Biol. Med. 50, 1186-1195. https://doi.org/10.1016/j.freeradbiomed.2011.01.033
  14. Lin, Y., Hupp, T. R. and Stevens, C. (2010) Death-associated protein kinase (DAPK) and signal transduction: additional roles beyond cell death. FEBS J. 277, 48-57. https://doi.org/10.1111/j.1742-4658.2009.07411.x
  15. Bovellan, M., Fritzsche, M., Stevens, C. and Charras, G. (2010) Death-associated protein kinase (DAPK) and signal transduction: blebbing in programmed cell death. FEBS J. 277, 58-65. https://doi.org/10.1111/j.1742-4658.2009.07412.x
  16. Huang, Y. C., Hung, W. C., Chen, W. T., Yu, H. S. and Chai, C. Y. (2009) Sodium arsenite-induced DAPK promoter hypermethylation and autophagy via ERK1/2 phosphorylation in human uroepithelial cells. Chem. Biol. Interact. 181, 254-262. https://doi.org/10.1016/j.cbi.2009.06.020
  17. de la Chapelle, A., Raval, A., Tanner, S. M., Byrd, J. C., Angerman, E. B., Perko, J. D., Chen, S. S., Hackanson, B., Grever, M. R., Lucas, D. M., MatkoviC, J. J., Lin, T. S., Kipps, T. J., Murray, F., Weisenburger, D., Sanger, W., Lynch, J., Watson, P., Jansen, M., Yoshinaga, Y., Rosenquist, R., de Jong, P. J., Coggill, P., Beck, S., Lynch, H. and Plass, C. (2007) Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129, 879-890. https://doi.org/10.1016/j.cell.2007.03.043
  18. Widau, R. C., Jin, Y., Dixon, S. A., Wadzinski, B. E. and Gallagher, P. J. (2010) Protein phosphatase 2A (PP2A) holoenzymes regulate death-associated protein kinase (DAPK) in ceramide-induced anoikis. J. Biol. Chem. 285, 13827- 13838. https://doi.org/10.1074/jbc.M109.085076
  19. Kimchi, A., Gozuacik, D., Bialik, S., Raveh, T., Mitou, G., Shohat, G., Sabanay, H., Mizushima, N. and Yoshimori, T. (2008) DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death and Differentiation 15, 1875-1886. https://doi.org/10.1038/cdd.2008.121
  20. Sundaram, N., Pahwa, A. K., Ard, M. D., Lin, N., Perkins, E. and Bowles, A. P., Jr. (2000) Selenium causes growth inhibition and apoptosis in human brain tumor cell lines. J. Neurooncol. 46, 125-133. https://doi.org/10.1023/A:1006436326003
  21. Itoh, T., Ohguchi, K., Nozawa, Y. and Akao, Y. (2009) Intracellular glutathione regulates sesquiterpene lactone- induced conversion of autophagy to apoptosis in human leukemia HL60 cells. Anticancer Res. 29, 1449- 1457.
  22. Kimchi, A. (2001) A cell death-promoting kinase. Nat. Struct. Biol. 8, 824-826. https://doi.org/10.1038/nsb1001-824
  23. Qian, J., Yao, D. M., Lin, J., Chen, Q., Li, Y., Ji, R. B., Yang, J., Qian, Z., Xiao, G. F. and Wang, Y. L. (2010) Alteration of methylation status of death-associated protein kinase (dapk) gene promoter in patients with acute myeloid leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 18, 1390-1394.
  24. Houle, F., Poirier, A., Dumaresq, J. and Huot, J. (2007) DAP kinase mediates the phosphorylation of tropomyosin- 1 downstream of the ERK pathway, which regulates the formation of stress fibers in response to oxidative stress. J. Cell Sci. 120, 3666-3677. https://doi.org/10.1242/jcs.003251
  25. Chen, R. H., Chen, C. H., Wang, W. J., Kuo, J. C., Tsai, H. C., Lin, J. R. and Chang, Z. F. (2005) Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. Embo J. 24, 294-304. https://doi.org/10.1038/sj.emboj.7600510
  26. Jin, Y., Blue, E. K. and Gallagher, P. J. (2006) Control of death-associated protein kinase (DAPK) activity by phosphorylation and proteasomal degradation. J. Biol. Chem. 281, 39033-39040. https://doi.org/10.1074/jbc.M605097200
  27. Bajbouj, K., Poehlmann, A., Kuester, D., Drewes, T., Haase, K., Hartig, R., Teller, A., Kliche, S., Walluscheck, D., Ivanovska, J., Chakilam, S., Ulitzsch, A., Bommhardt, U., Leverkus, M., Roessner, A. and Schneider-Stock, R. (2009) Identification of phosphorylated p38 as a novel DAPK-interacting partner during TNFalpha-induced apoptosis in colorectal tumor cells. Am. J. Pathol. 175, 557- 570. https://doi.org/10.2353/ajpath.2009.080853
  28. Ling, Y. H., Aracil, M., Zou, Y., Yuan, Z., Lu, B., Jimeno, J., Cuervo, A. M. and Perez-Soler, R. (2011) PM02734 (Elisidepsin) Induces Caspase-Independent Cell Death Associated with Features of Autophagy, Inhibition of the Akt/mTOR Signaling Pathway, and Activation of Death- Associated Protein Kinase. Clin. Cancer Res. 17, 5353- 5366. https://doi.org/10.1158/1078-0432.CCR-10-1948
  29. Lin, Y., Henderson, P., Pettersson, S., Satsangi, J., Hupp, T. and Stevens, C. (2011) Tuberous sclerosis-2 (TSC2) regulates the stability of death-associated protein kinase-1 (DAPK) through a lysosome-dependent degradation pathway. FEBS J. 278, 354-370. https://doi.org/10.1111/j.1742-4658.2010.07959.x
  30. Harrison, B., Kraus, M., Burch, L., Stevens, C., Craig, A., Gordon-Weeks, P. and Hupp, T. R. (2008) DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. J. Biol. Chem. 283, 9999- 10014. https://doi.org/10.1074/jbc.M706040200
  31. Zalckvar, E., Berissi, H., Eisenstein, M. and Kimchi, A. (2009) Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5, 720-722. https://doi.org/10.4161/auto.5.5.8625

Cited by

  1. The DAP-kinase interactome vol.19, pp.2, 2014, https://doi.org/10.1007/s10495-013-0926-3
  2. Modulation of Imatinib Cytotoxicity by Selenite in HCT116 Colorectal Cancer Cells vol.116, pp.1, 2015, https://doi.org/10.1111/bcpt.12281
  3. Phosphorylation of the N-terminal domain of p48 Ebp1 by CDK2 is required for tumorigenic function of p48 vol.54, pp.11, 2015, https://doi.org/10.1002/mc.22203
  4. Salidroside induces apoptosis and autophagy in human colorectal cancer cells through inhibition of PI3K/Akt/mTOR pathway vol.36, pp.6, 2016, https://doi.org/10.3892/or.2016.5138
  5. Evaluating DAPK as a therapeutic target vol.19, pp.2, 2014, https://doi.org/10.1007/s10495-013-0919-2
  6. Methylseleninic Acid Suppresses Pancreatic Cancer Growth Involving Multiple Pathways vol.66, pp.2, 2014, https://doi.org/10.1080/01635581.2014.868911
  7. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells vol.4, pp.8, 2013, https://doi.org/10.1038/cddis.2013.273
  8. Targeting Oncogene-Induced Autophagy: A New Approach in Cancer Therapy? vol.2013, 2013, https://doi.org/10.1155/2013/350863
  9. Hepatitis B virus x protein induces autophagyviaactivating death-associated protein kinase vol.21, pp.9, 2014, https://doi.org/10.1111/jvh.12191
  10. Peneciraistin C induces caspase-independent autophagic cell death through mitochondrial-derived reactive oxygen species production in lung cancer cells vol.104, pp.11, 2013, https://doi.org/10.1111/cas.12253
  11. Potential therapeutic approaches for modulating expression and accumulation of defective lamin A in laminopathies and age-related diseases vol.90, pp.12, 2012, https://doi.org/10.1007/s00109-012-0962-4
  12. Survivin-2B promotes autophagy by accumulating IKK alpha in the nucleus of selenite-treated NB4 cells vol.5, pp.2, 2014, https://doi.org/10.1038/cddis.2014.34
  13. Anticancer Activity and Autophagy Involvement of Self-Assembled Arene–Ruthenium Metallacycles vol.34, pp.18, 2015, https://doi.org/10.1021/acs.organomet.5b00512
  14. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes pp.01986325, 2019, https://doi.org/10.1002/med.21518