DOI QR코드

DOI QR Code

Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells

  • Kim, Tae-Hoon (Department of Herbal Medicinal Pharmacology, College of Herbal Bio-Industry) ;
  • Ku, Sae-Kwang (Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University) ;
  • Lee, In-Chul (Senior Industry Cluster Agency, Youngdong University) ;
  • Bae, Jong-Sup (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
  • Received : 2011.11.04
  • Accepted : 2011.12.07
  • Published : 2012.03.31

Abstract

Enzymatic oxidation of commercially available pyrogallol was efficiently transformed to an oxidative product, purpurogallin. Purpurogallin plays an important role in inhibiting glutathione S-transferase, xanthine oxidase, catechol O-methyltransferase activities and is effective in the cell protection of several cell types. However, the anti-inflammatory functions of purpurogallin are not well studied. Here, we determined the effects of purpurogallin on lipopolysaccharide (LPS)-mediated proinflammatory responses. The results showed that purpurogallin inhibited LPS-mediated barrier hyper-permeability, monocyte adhesion and migration and such inhibitory effects were significantly correlated with the inhibitory functions of purpurogallin on LPS-mediated cell adhesion molecules (vascular cell adhesion molecules, intracellular cell adhesion molecule, E-selectin). Furthermore, LPS-mediated nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) releases from HUVECs were inhibited by purpurogallin. Given these results, purpurogallin showed its anti-inflammatory activities and could be a candidate as a therapeutic agent for various systemic inflammatory diseases.

Keywords

References

  1. Hakkert, B. C., Kuijpers, T. W., Leeuwenberg, J. F., van Mourik, J. A. and Roos, D. (1991) Neutrophil and monocyte adherence to and migration across monolayers of cytokine- activated endothelial cells: the contribution of CD18, ELAM-1, and VLA-4. Blood 78, 2721-2726.
  2. Albelda, S. M., Smith, C. W. and Ward, P. A. (1994) Adhesion molecules and inflammatory injury. FASEB J. 8, 504-512. https://doi.org/10.1096/fasebj.8.8.8181668
  3. Gearing, A. J. and Newman, W. (1993) Circulating adhesion molecules in disease. Immunol Today 14, 506-512. https://doi.org/10.1016/0167-5699(93)90267-O
  4. Tedder, T. F., Steeber, D. A., Chen, A. and Engel, P. (1995) The selectins: vascular adhesion molecules. FASEB J. 9, 866-873. https://doi.org/10.1096/fasebj.9.10.7542213
  5. Collins, T., Read, M. A., Neish, A. S., Whitley, M. Z., Thanos, D. and Maniatis, T. (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J. 9, 899-909. https://doi.org/10.1096/fasebj.9.10.7542214
  6. Li, H., Cybulsky, M. I., Gimbrone, M. A., Jr. and Libby, P. (1993) Inducible expression of vascular cell adhesion molecule- 1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am. J. Pathol. 143, 1551-1559.
  7. Panes, J., Perry, M. and Granger, D. N. (1999) Leukocyteendothelial cell adhesion: avenues for therapeutic intervention. Br. J. Pharmacol. 126, 537-550. https://doi.org/10.1038/sj.bjp.0702328
  8. Mehta, D. and Malik, A. B. (2006) Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86, 279- 367. https://doi.org/10.1152/physrev.00012.2005
  9. Ware, L. B. and Matthay, M. A. (2000) The acute respiratory distress syndrome. N. Engl. J. Med. 342, 1334-1349. https://doi.org/10.1056/NEJM200005043421806
  10. Dhillon, S. S., Mahadevan, K., Bandi, V., Zheng, Z., Smith, C. W. and Rumbaut, R. E. (2005) Neutrophils, nitric oxide, and microvascular permeability in severe sepsis. Chest 128, 1706-1712. https://doi.org/10.1378/chest.128.3.1706
  11. Abou-Karam, M. and Shier, W. T. (1999) Inhibition of oncogene product enzyme activity as an approach to cancer chemoprevention. Tyrosine-specific protein kinase inhibition by purpurogallin from Quercus sp. nutgall. Phytother Res. 13, 337-340. https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<337::AID-PTR451>3.0.CO;2-J
  12. Barltrop, J. A. and Nicholson, J. S. (1948) The oxidation products of phenols; the structure of purpurogallin. J. Chem. Soc. 2, 116-120.
  13. Das, M., Bickers, D. R. and Mukhtar, H. (1984) Plant phenols as in vitro inhibitors of glutathione S-transferase(s). Biochem. Biophys. Res. Commun. 120, 427-433. https://doi.org/10.1016/0006-291X(84)91271-3
  14. Zeng, L. H. and Wu, T. W. (1992) Purpurogallin is a more powerful protector of kidney cells than Trolox and allopurinol. Biochem. Cell Biol. 70, 684-690. https://doi.org/10.1139/o92-104
  15. Veser, J. (1987) Kinetics and inhibition studies of catechol O-methyltransferase from the yeast Candida tropicalis. J. Bacteriol. 169, 3696-3700. https://doi.org/10.1128/jb.169.8.3696-3700.1987
  16. Wu, T. W., Zeng, L. H., Wu, J. and Carey, D. (1991) Purpurogallin--a natural and effective hepatoprotector in vitro and in vivo. Biochem. Cell Biol. 69, 747-750. https://doi.org/10.1139/o91-113
  17. Wu, T. W., Zeng, L. H., Wu, J., Fung, K. P., Weisel, R. D., Hempel, A. and Camerman, N. (1996) Molecular structure and antioxidant specificity of purpurogallin in three types of human cardiovascular cells. Biochem. Pharmacol. 52, 1073-1080. https://doi.org/10.1016/0006-2952(96)00447-9
  18. Inamori, Y., Muro, C., Sajima, E., Katagiri, M., Okamoto, Y., Tanaka, H., Sakagami, Y. and Tsujibo, H. (1997) Biological activity of purpurogallin. Biosci. Biotechnol. Biochem. 61, 890-892. https://doi.org/10.1271/bbb.61.890
  19. Berman, R. S., Frew, J. D. and Martin, W. (1993) Endotoxin-induced arterial endothelial barrier dysfunction assessed by an in vitro model. Br. J. Pharmacol. 110, 1282-1284. https://doi.org/10.1111/j.1476-5381.1993.tb13956.x
  20. Goldblum, S. E., Ding, X., Brann, T. W. and Campbell- Washington, J. (1993) Bacterial lipopolysaccharide induces actin reorganization, intercellular gap formation, and endothelial barrier dysfunction in pulmonary vascular endothelial cells: concurrent F-actin depolymerization and new actin synthesis. J. Cell Physiol. 157, 13-23. https://doi.org/10.1002/jcp.1041570103
  21. Sawa, Y., Sugimoto, Y., Ueki, T., Ishikawa, H., Sato, A., Nagato, T. and Yoshida, S. (2007) Effects of TNF-alpha on leukocyte adhesion molecule expressions in cultured human lymphatic endothelium. J. Histochem. Cytochem. 55, 721-733. https://doi.org/10.1369/jhc.6A7171.2007
  22. Mackay, F., Loetscher, H., Stueber, D., Gehr, G. and Lesslauer, W. (1993) Tumor necrosis factor alpha (TNF-alpha)- induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J. Exp. Med. 177, 1277-1286. https://doi.org/10.1084/jem.177.5.1277
  23. Chen, C., Jamaluddin, M. S., Yan, S., Sheikh-Hamad, D. and Yao, Q. (2008) Human stanniocalcin-1 blocks TNF-alpha- induced monolayer permeability in human coronary artery endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 906-912. https://doi.org/10.1161/ATVBAHA.108.163667
  24. Chen, B. C., Chou, C. F. and Lin, W. W. (1998) Pyrimidinoceptor-mediated potentiation of inducible nitric- oxide synthase induction in J774 macrophages. Role of intracellular calcium. J. Biol. Chem. 273, 29754-29763. https://doi.org/10.1074/jbc.273.45.29754
  25. Thompson, J. E., Phillips, R. J., Erdjument-Bromage, H., Tempst, P. and Ghosh, S. (1995) I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell 80, 573-582. https://doi.org/10.1016/0092-8674(95)90511-1
  26. Wu, T. W., Wu, J., Carey, D. and Zeng, L. H. (1992) Purpurogallin protects both ventricular myocytes and aortic endothelial cells of rats against oxyradical damage. Biochem. Cell Biol. 70, 803-809. https://doi.org/10.1139/o92-122
  27. Leirisalo-Repo, M. (1994) The present knowledge of the inflammatory process and the inflammatory mediators. Pharmacol. Toxicol. 75(Suppl 2), 1-3.
  28. Dejana, E. (1996) Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J. Clin. Invest 98, 1949-1953. https://doi.org/10.1172/JCI118997
  29. Muller, W. A. (2002) Leukocyte-endothelial cell interactions in the inflammatory response. Lab. Invest. 82, 521- 533. https://doi.org/10.1038/labinvest.3780446
  30. Bae, J. S. and Rezaie, A. R. (2008) Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thromb Haemost 100, 101-109.
  31. Akeson, A. L. and Woods, C. W. (1993) A fluorometric assay for the quantitation of cell adherence to endothelial cells. J. Immunol. Methods 163, 181-185. https://doi.org/10.1016/0022-1759(93)90121-M
  32. Che, W., Lerner-Marmarosh, N., Huang, Q., Osawa, M., Ohta, S., Yoshizumi, M., Glassman, M., Lee, J. D., Yan, C., Berk, B. C. and Abe, J. (2002) Insulin-like growth factor- 1 enhances inflammatory responses in endothelial cells: role of Gab1 and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression. Circ. Res. 90, 1222-1230. https://doi.org/10.1161/01.RES.0000021127.83364.7D

Cited by

  1. Methylthiouracil, a new treatment option for sepsis vol.88, 2017, https://doi.org/10.1016/j.vph.2015.07.013
  2. Inhibitory effects of pentacyclic triterpenoids from Astilbe rivularis on TGFBIp-induced inflammatory responses in vitro and in vivo vol.254, 2016, https://doi.org/10.1016/j.cbi.2016.06.015
  3. Anti-vascular inflammatory effects of pentacyclic triterpenoids from Astilbe rivularis in vitro and in vivo vol.261, 2017, https://doi.org/10.1016/j.cbi.2016.11.014
  4. Ameliorative Effect of Vicenin-2 and Scolymoside on TGFBIp-Induced Septic Responses vol.38, pp.6, 2015, https://doi.org/10.1007/s10753-015-0199-9
  5. Anti-inflammatory effects of dabrafenib on polyphosphate-mediated vascular disruption vol.256, 2016, https://doi.org/10.1016/j.cbi.2016.07.024
  6. Suppressive effects of zingerone on TGFBIp-mediated septic responses 2018, https://doi.org/10.1007/s12272-017-0919-9
  7. Anti-inflammatory effects of vicenin-2 and scolymoside on polyphosphate-mediated vascular inflammatory responses vol.65, pp.3, 2016, https://doi.org/10.1007/s00011-015-0906-x
  8. Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) Inhibits High Glucose-Induced Inflammation In Vitro and In Vivo vol.38, pp.1, 2015, https://doi.org/10.1007/s10753-014-0049-1
  9. Exendin-4 Inhibits HMGB1-Induced Inflammatory Responses in HUVECs and in Murine Polymicrobial Sepsis vol.37, pp.5, 2014, https://doi.org/10.1007/s10753-014-9919-9
  10. Purpurogallin exerts anti-inflammatory effects in lipopolysaccharide-stimulated BV2 microglial cells through the inactivation of the NF-κB and MAPK signaling pathways vol.32, pp.5, 2013, https://doi.org/10.3892/ijmm.2013.1478
  11. Vascular barrier protective effects of piperlonguminine in vitro and in vivo vol.63, pp.5, 2014, https://doi.org/10.1007/s00011-014-0708-6
  12. Antiplatelet and antithrombotic activities of purpurogallin in vitro and in vivo vol.47, pp.7, 2014, https://doi.org/10.5483/BMBRep.2014.47.7.195
  13. Inhibitory effects of purpurogallin on the endothelial protein C receptor shedding in vitro and in vivo vol.56, pp.5, 2013, https://doi.org/10.1007/s13765-013-3169-7
  14. Anti-septic effects of phenolic glycosides from Rhododendron brachycarpum in vitro and in vivo vol.16, 2015, https://doi.org/10.1016/j.jff.2015.04.053
  15. Anti-inflammatory effects of vicenin-2 and scolymoside in vitro and in vivo vol.64, pp.12, 2015, https://doi.org/10.1007/s00011-015-0886-x
  16. Suppressive effects of polyozellin on TGFBIp-mediated septic responses in human endothelial cells and mice vol.36, pp.4, 2016, https://doi.org/10.1016/j.nutres.2015.12.009
  17. Anti-septic Effects of Pellitorine in HMGB1-Induced Inflammatory Responses In Vitro and In Vivo vol.37, pp.2, 2014, https://doi.org/10.1007/s10753-013-9745-5
  18. Anti-inflammatory effects of pelargonidin on TGFBIp-induced responses vol.95, pp.4, 2017, https://doi.org/10.1139/cjpp-2016-0322
  19. Suppressive effects of pelargonidin on PolyPhosphate-mediated vascular inflammatory responses vol.40, pp.2, 2017, https://doi.org/10.1007/s12272-016-0856-z
  20. Antiseptic Effects of New 3′-N-Substituted Carbazole Derivatives In Vitro and In Vivo vol.38, pp.4, 2015, https://doi.org/10.1007/s10753-015-0141-1
  21. Ginsenosides Inhibit HMGB1-induced Inflammatory Responses in HUVECs and in Murine Polymicrobial Sepsis vol.35, pp.10, 2014, https://doi.org/10.5012/bkcs.2014.35.10.2955
  22. Ameliorative Effect of Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) on HMGB1-Induced Septic Responses In Vitro and In Vivo vol.43, pp.05, 2015, https://doi.org/10.1142/S0192415X15500573
  23. Vascular barrier protective effects of orientin and isoorientin in LPS-induced inflammation in vitro and in vivo vol.62, pp.1, 2014, https://doi.org/10.1016/j.vph.2014.04.006
  24. Anti-Inflammatory Effects of Hyperoside in Human Endothelial Cells and in Mice vol.38, pp.2, 2015, https://doi.org/10.1007/s10753-014-9989-8
  25. Vascular barrier protective effects of pellitorine in LPS-induced inflammation in vitro and in vivo vol.92, 2014, https://doi.org/10.1016/j.fitote.2013.11.006
  26. Anti-inflammatory Effects of Baicalin, Baicalein, and Wogonin In Vitro and In Vivo vol.38, pp.1, 2015, https://doi.org/10.1007/s10753-014-0013-0
  27. Vicenin-2 and scolymoside inhibit high-glucose-induced vascular inflammation in vitro and in vivo vol.94, pp.3, 2016, https://doi.org/10.1139/cjpp-2015-0215
  28. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses vol.474, pp.4, 2016, https://doi.org/10.1016/j.bbrc.2016.05.016
  29. Endocan Elicits Severe Vascular Inflammatory Responses In Vitro and In Vivo vol.229, pp.5, 2014, https://doi.org/10.1002/jcp.24485
  30. The influence of Procyanidins, Gallic acid and Theaflavins extracted level when fermented sun-dried salt and green tea vol.15, pp.6, 2014, https://doi.org/10.5762/KAIS.2014.15.6.3774
  31. Anti-septic Effects of Fisetin In Vitro and In Vivo vol.37, pp.5, 2014, https://doi.org/10.1007/s10753-014-9883-4
  32. Orientin Inhibits High Glucose-Induced Vascular Inflammation In Vitro and In Vivo vol.37, pp.6, 2014, https://doi.org/10.1007/s10753-014-9950-x
  33. Inhibitory effects of polyozellin from Polyozellus multiplex on HMGB1-mediated septic responses vol.64, pp.9, 2015, https://doi.org/10.1007/s00011-015-0856-3
  34. Emodin-6-O-β-d-glucoside down-regulates endothelial protein C receptor shedding vol.36, pp.9, 2013, https://doi.org/10.1007/s12272-013-0114-6
  35. Factor Xa inhibits HMGB1-induced septic responses in human umbilical vein endothelial cells and in mice vol.112, pp.4, 2014, https://doi.org/10.1160/TH14-03-0233
  36. Anti-inflammatory effects of dabrafenib in vitro and in vivo vol.95, pp.6, 2017, https://doi.org/10.1139/cjpp-2016-0519
  37. Ameliorative effect of a rarely occurring C-methylrotenoid on HMGB1-induced septic responses in vitro and in vivo vol.110-111, 2016, https://doi.org/10.1016/j.bcp.2016.04.006
  38. Orientin Inhibits HMGB1-Induced Inflammatory Responses in HUVECs and in Murine Polymicrobial Sepsis vol.37, pp.5, 2014, https://doi.org/10.1007/s10753-014-9899-9
  39. Anti-septic effects of glyceollins in HMGB1-induced inflammatory responses in vitro and in vivo vol.63, 2014, https://doi.org/10.1016/j.fct.2013.10.034
  40. Anti-inflammatory effects of methylthiouracil in vitro and in vivo vol.288, pp.3, 2015, https://doi.org/10.1016/j.taap.2015.08.009
  41. Anti-inflammatory Effects of Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) In Vitro and In Vivo vol.38, pp.4, 2015, https://doi.org/10.1007/s10753-015-0125-1
  42. Microarray analysis of gene expression in 3-methylcholanthrene-treated human endothelial cells vol.10, pp.1, 2014, https://doi.org/10.1007/s13273-014-0003-1
  43. Andrographolide inhibits HMGB1-induced inflammatory responses in human umbilical vein endothelial cells and in murine polymicrobial sepsis vol.211, pp.1, 2014, https://doi.org/10.1111/apha.12264
  44. Suppressive effects of three diketopiperazines from marine-derived bacteria on TGFBIp-mediated septic responses in human endothelial cells and mice vol.39, pp.6, 2016, https://doi.org/10.1007/s12272-016-0743-7
  45. Suppressive effects of methylthiouracil on polyphosphate-mediated vascular inflammatory responses vol.20, pp.12, 2016, https://doi.org/10.1111/jcmm.12925
  46. Vascular barrier protective effects of baicalin, baicalein and wogonin in vitro and in vivo vol.281, pp.1, 2014, https://doi.org/10.1016/j.taap.2014.09.003
  47. Bufalin prevents the migration and invasion of T24 bladder carcinoma cells through the inactivation of matrix metalloproteinases and modulation of tight junctions vol.42, pp.1, 2013, https://doi.org/10.3892/ijo.2012.1683
  48. Antiseptic effect of vicenin-2 and scolymoside fromCyclopia subternata(honeybush) in response to HMGB1 as a late sepsis mediator in vitro and in vivo vol.93, pp.8, 2015, https://doi.org/10.1139/cjpp-2015-0021
  49. Suppressive effects of three diketopiperazines from marine-derived bacteria on polyphosphate-mediated septic responses vol.257, 2016, https://doi.org/10.1016/j.cbi.2016.07.032
  50. Suppressive Effects of Zingerone on Polyphosphate-Mediated Vascular Inflammatory Responses vol.14, pp.1, 2017, https://doi.org/10.3923/ijp.2018.20.30
  51. Inhibitory Effects of Sulforaphane on Polyphosphate-mediated Septic Responses vol.14, pp.1, 2018, https://doi.org/10.3923/ijp.2018.83.92