DOI QR코드

DOI QR Code

Synthesis and Characterization of Phosphoric Acid-doped Poly (2,5-benzimidazole) Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells

고온 고분자 연료전지용 인산 도핑 폴리(2,5-벤지이미다졸) 막의 제조 및 특성

  • Nguyen, Thi Xuan Hien (BIN Fusion Research Team, Dept. of Polymer & Nano Engineering, Chonbuk National University) ;
  • Mishra, Ananta Kumar (BIN Fusion Research Team, Dept. of Polymer & Nano Engineering, Chonbuk National University) ;
  • Choi, Ji-Sun (Fuel Cell Core Technology Research Center, Jeonbuk Technopark) ;
  • Kim, Nam-Hoon (Dept. of Hydrogen and Fuel Cell Engineering, Chonbuk National University) ;
  • Lee, Joong-Hee (BIN Fusion Research Team, Dept. of Polymer & Nano Engineering, Chonbuk National University)
  • Received : 2011.12.28
  • Accepted : 2012.02.24
  • Published : 2012.02.28

Abstract

Phosphoric acid-doped poly (2,5-benzimidazole) (DABPBI) was prepared by condensation polymerization of 3,4-diaminobenzoic acid for high temperature proton electrolyte membrane fuel cells. The membranes were casted directly using a hot-press unit and characterized by fourier transform infrared spectroscopy, thermogravimetric analysis, conductivity measurement, scanning electron microscopy and tensile test. The proton conductivities of DABPBI are observed to be 0.062 and 0.018 $S{\cdot}cm^{-1}$ under 30 and 1% relative humidity, respectively at a temperature of $120^{\circ}C$ which is appreciably higher than that of Nafion 115 under similar conditions. The DABPBI membrane has demonstrated excellent thermo- mechanical properties and proton conductivity suggesting its suitability as a high temperature membrane.

Keywords

References

  1. C.S. Spiegel, In: Designing & Building Fuel Cells, Mc Graw-Hill, New York, 2007, p.35-52.
  2. J. Larminie and A. Dicks, Fuel cell systems explained (2nd edition), John Wiley & Sons, 2003, p. 67-119.
  3. A. K. Mishra, S. Bose, T. Kuila, N. H. Kim, and J. H. Lee, "Silicate-based polymer-nano composite membranes for polymer electrolyte membrane fuel cells", Prog. Polym. Sci. doi: 10.1016/j.prog polymsci.2011.11.002.
  4. S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K. Lau, and J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges", Prog. Polym. Sci., Vol. 36, No. 6, 2011, p. 813. https://doi.org/10.1016/j.progpolymsci.2011.01.003
  5. S. M. J. Zaidi, "Research trends in polymer electrolyte membranes for PEMFC". in S. M. J. Zaidi, T. Matsuura (eds.), "Polymer membrane for fuel cells", Springer Science Business Media, Germany, 2009, p. 7.
  6. C. Heitner-Wirguin, "Recent advances in perfluorinated ionomer membranes: structure, properties and applications", J. Membr. Sci., Vol. 120, No. 1, 1996, p. 1. https://doi.org/10.1016/0376-7388(96)00155-X
  7. K. A. Mauritz and R. B. Moore, "State of understanding of nafion", Chem. Rev., Vol. 104, No. 10, 2004, p. 4535. https://doi.org/10.1021/cr0207123
  8. S. Bhadra, N. H. Kim, and J. H. Lee, "A new selfcross-linked, net-structured, proton conducting polymer membrane for high temperature proton exchange membrane fuel cells", J. Membr. Sci., Vol. 349, No. 1-2, p. 304. https://doi.org/10.1016/j.memsci.2009.11.061
  9. T. H. Lim and H. J. Kim, "Development and application of high temperature proton exchange membrane fuel cells", Trans. of the Korea Hydrogen and New Energy Society, Vol. 18, No. 4, 2007, p. 439.
  10. H. Bai and W. S. W. Ho, "New poly (ethylene oxide) soft segment-containing sulfonated polyimide copolymers for high temperature proton-exchange membrane fuel cells", J. Membr. Sci., Vol. 313, No. 1-2, 2008, p. 75. https://doi.org/10.1016/j.memsci.2007.12.062
  11. D. H. Choi, J. Lee, O. Kwon, J. Y. Kim, and K. Kim, "Sulfonated poly(fluorinated arylene ether)s/poly (N-vinylimidazole) blend polymer and PTFE layered membrane for operating PEMFC at high temperature", J. Power Sources, Vol. 178, No. 2, 2008, p. 677. https://doi.org/10.1016/j.jpowsour.2007.08.054
  12. S. E. Nam, S. O. Kim, Y. Kang, J. W. Lee, and K. H. Lee, "Preparation of nafion/sulfonated poly (phenylsilsesquioxane) nanocomposite as high temperature proton exchange membranes", J. Membr. Sci., Vol. 322, No. 2, 2008, p. 466. https://doi.org/10.1016/j.memsci.2008.05.075
  13. G. Qian, D. W. Smith Jr., and B. C. Benicewicz, "Synthesis and characterization of high molecular weight perfluorocyclobutyl containing polybenzimidazoles (PFCB-PBI) for high temperature polymer electrolyte membrane fuel cells", Polymer, Vol. 50, No. 16, 2009, p. 3911. https://doi.org/10.1016/j.polymer.2009.06.024
  14. Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB-PBI) for high temperature polymer electrolyte membrane fuel cells", Prog. Polym. Sci., Vol. 34, No. 16, 2009, p. 449. https://doi.org/10.1016/j.progpolymsci.2008.12.003
  15. S. Bhadra, N. H. Kim, J. S. Choi, K. Y. Rhee, and J. H. Lee, "Hyperbranched poly (benzimidazoleco-benzene) with honeycomb structure as a membrane for high temperature proton-exchange membrane fuel cells", J. Power Sources, Vol. 195, No. 9, 2010, p. 2470. https://doi.org/10.1016/j.jpowsour.2009.11.083
  16. H. J. Kim, S. Y. Cho, S. J. An, Y. C. Eun, J. Y. Kim, H. K. Yoon, H. J. Kweon, and K. H. Yew, "Synthesis of poly (2,5-benzimidazole) for use as a fuel-cell membrane", Macromol. Rapid Commun., Vol. 25, No. 8, 2004, p. 894. https://doi.org/10.1002/marc.200300288
  17. J. A. Asensio and P. Gomez-Romero, "Recent developments on proton conducting Poly (2,5-benzimidazole) (ABPBI) membranes for high temperature polymer electrolyte membrane fuel cells", Fuel Cells, Vol. 5, No. 3, 2005, p. 336. https://doi.org/10.1002/fuce.200400081
  18. J. A. Asensio, S. Borros, and P. Gomez-Romero, "Polymer electrolyte fuel cells based on phosphoric acid-impregnated poly (2,5-benzimidazole) membranes", J. Electrochem. Soc., Vol. 151 No. 2, 2004, p. A304. https://doi.org/10.1149/1.1640628
  19. J. A. Asensio, S. Borros, and P. Gomez-Romero, "Proton-conducting membranes based on poly (2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting", J. Membrane Sci., Vol. 241, No. 1, 2004, p. 89. https://doi.org/10.1016/j.memsci.2004.03.044
  20. T. H. Kim, T. W. Lim, Y. S. Park, K. Shin, and J. C. Lee, "Proton-conducting zirconium pyrophosphate/ poly (2,5-benzimidazole) composite membranes prepared by a PPA direct casting method", Macromol. Chem. Phys., Vol. 208, No. 21, 2007, p. 2293. https://doi.org/10.1002/macp.200700261
  21. J. A. Asensio, S. Borros, and P. Gomez-Romero, "Proton-conducting polymers based on benzimidazoles and sulfonated benz-imidazoles", J. Polym. Sci., Part A: Polym. Chem., Vol. 40, No. 21, 2002, p. 3703. https://doi.org/10.1002/pola.10451
  22. J. A. Asensio, S. Borros, and P. Gomez-Romero, "Sulfonated poly (2,5-benzimidazole) (SABPBI) impregnated with phosphoric acid as proton conducting membranes for polymer electrolyte fuel cells", Electrochim. Acta, Vol. 49, No. 25, 2004, p. 4461. https://doi.org/10.1016/j.electacta.2004.05.002
  23. L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E. W. Choe, L. S. Ramanathan, S. Yu, and B. C. Benicewicz, "Synthesis and characterization of pyridine-based poly benzimidazoles for high temperature polymer electrolyte membrane fuel cell applications", Fuel Cells, Vol. 5, No. 2, 2005, p. 287. https://doi.org/10.1002/fuce.200400067
  24. C. E. Hughes, S. Haufe, B. Angerstein, R. Kalim, U. Mahr, A. Reiche, and M. Baldus, "Probing structure and dynamics in poly[2,2′-(m-phenylene)-5,5′-bibenzimidazole] fuel cells with magic-angle spinning NMR", J. Phys. Chem., Vol. 108, No. 36, 2004, p. 13626. https://doi.org/10.1021/jp047607c

Cited by

  1. Synthesis and characterization of novel thiophene-based polybenzimidazole membrane for high-temperature fuel cells vol.43, pp.8, 2013, https://doi.org/10.1007/s10800-013-0556-z