DOI QR코드

DOI QR Code

Effect of Al Addition on the Precipitation Behavior of a Binary Mg-Zn Alloy

  • Kim, Ye-Lim (Graduate student, Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology) ;
  • Tezuka, Hiroyasu (Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology) ;
  • Kobayashi, Equo (Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology) ;
  • Sato, Tatsuo (Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology)
  • Received : 2012.02.06
  • Accepted : 2012.02.08
  • Published : 2012.03.27

Abstract

The effect of Al addition on the precipitation behavior of a binary Mg-Zn alloy was investigated based on the changes in the morphology, distribution and element concentration of precipitates formed during aging treatment. The as-cast Mg-6.0 mass%Zn (Mg-6Zn) and Mg-6.0 mass%Zn-3.0 mass%Al (Al-added) were homogenized at 613 K for 48 h and at 673 K for 12 h; they were then solid solution treated at 673 K for 0.5 h and 1 h, respectively. The Mg-6Zn and Al-added alloys were aged at 403 K and 433 K. The peak hardness of the Al-added alloy was higher than that of the Mg-6Zn alloy at each aging temperature. Rod-like, plate-like, blocky, and lath-like precipitates were observed in the Al-added alloy aged at 433 K for 230.4 ks, although the rod-like and plate-like precipitates were observed in the TEM microstructure of the Mg-6Zn alloy aged at 433 K for 360 ks. Moreover, the precipitates in the Al-added alloy were refined and densely distributed compared with those in the Mg-6Zn alloy. The Cliff-Lorimer plots obtained by the EDS analysis of the rod-like ${\beta}_1^'$ and plate-like ${\beta}_2^'$ phases in the Al-added alloy peak aged at 433 K for 230.4 ks were examined. It was confirmed that the ${\beta}_2^'$ phases had higher concentration of solute Al atom than was present in the ${\beta}_1^'$ phases, indicating that the properties of precipitates can be changed by Al addition.

Keywords

References

  1. X. Gao and J. F. Nie, Scripta Mater., 56(8), 645 (2007). https://doi.org/10.1016/j.scriptamat.2007.01.006
  2. J. Buha and T. Ohkubo, Metall. Mater. Trans., 39(9), 2259 (2008). https://doi.org/10.1007/s11661-008-9545-y
  3. M. Shahzad and L. Wagner, J. Alloy. Comp., 486, 103 (2009). https://doi.org/10.1016/j.jallcom.2009.06.123
  4. H. Y. Kwak and K. H. Lee, Kor. J. Mater. Res., 21(3), 168 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.3.168
  5. J. S. Chun and J. G. Byrne, J. Mater. Sci., 4(10), 861 (1969). https://doi.org/10.1007/BF00549777
  6. L. Y. Wei, G. L. Dunlop and H. Westengen, Metall. Mater. Trans. A, 26(7), 1705 (1995). https://doi.org/10.1007/BF02670757
  7. X. Gao and J. F. Nie, Scripta Mater., 57(7), 655 (2007). https://doi.org/10.1016/j.scriptamat.2007.06.005
  8. S. S. Park, G. T. Bae, D. H. Kang, I. H. Jung, K. S. Shin and N. J. Kim, Scripta Mater., 57(9), 793 (2007). https://doi.org/10.1016/j.scriptamat.2007.07.013
  9. S. S. Park, Y. S. Oh, D. H. Kang and N. J. Kim, Mater. Sci. Eng., 449-451, 352 (2007). https://doi.org/10.1016/j.msea.2006.02.389
  10. K. Oh-ishi, K. Hono and K. S. Shin, Mater. Sci. Eng., 496(1-2), 425 (2008). https://doi.org/10.1016/j.msea.2008.06.005
  11. J. B. Clark, Acta Mater., 13(12), 1281 (1965) https://doi.org/10.1016/0001-6160(65)90039-8
  12. J. Buha, Mater. Sci. Eng., 492(1-2), 11 (2008). https://doi.org/10.1016/j.msea.2008.02.038
  13. D. H. Ping, K. Hono and J. F. Nie, Scripta Mater., 48(8), 1017 (2003). https://doi.org/10.1016/S1359-6462(02)00586-9
  14. J. Buha, Mater. Sci. Eng., 492(1-2), 293 (2008). https://doi.org/10.1016/j.msea.2008.04.014
  15. J. Buha, J. Alloy. Comp., 472(1-2), 171 (2009). https://doi.org/10.1016/j.jallcom.2008.05.019
  16. J. C. Oh, T. Ohkubo, T. Mukai and K. Hono, Scripta Mater., 53(6), 675 (2005). https://doi.org/10.1016/j.scriptamat.2005.05.030
  17. S. S. Park, G. T. Bae, D. H. Kang, B. S. You and N. J. Kim, Scripta Mater., 61(2), 223 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.057
  18. J. Zhang, Z. X. Guo, F. Pan, Z. Li and X. Luo, Mater. Sci. Eng., 456(1-2), 43 (2007). https://doi.org/10.1016/j.msea.2006.11.089
  19. Y. Wang, S. Guan, X. Zeng and W. Ding, Mater. Sci. Eng., 416(1-2), 109 (2006). https://doi.org/10.1016/j.msea.2005.09.104
  20. J. Zhang, R. Zuo, Y. Chen, F. Pan and X. Luo, J. Alloy. Comp., 448(1-2), 316 (2008). https://doi.org/10.1016/j.jallcom.2006.10.135
  21. Alloy Phase Diagrams, ASM Hand book, Vol. 3, p.1100, ed. E. L. Langer, ASM International, Materials Park (1992).
  22. Alloy Phase Diagrams, ASM Hand book, Vol. 3, p.1540, ed. E. L. Langer, ASM International, Materials Park (1992).
  23. G. Mima and Y. Tanaka, Trans. Jpn. Inst. Met., 12(2), 71 (1971). https://doi.org/10.2320/matertrans1960.12.71
  24. G. Mima and Y. Tanaka, Trans. Jpn. Inst. Met., 12(2), 76 (1971). https://doi.org/10.2320/matertrans1960.12.76
  25. T. Takahashi, Y. Kojima and K. Takanishi, J. Jpn. Inst. Light Met., 23(8), 376 (1973). https://doi.org/10.2464/jilm.23.376
  26. K. Saito, A. Yasuhara and K. Hiraga, J. Alloy. Comp. 509(5), 2031 (2011). https://doi.org/10.1016/j.jallcom.2010.10.129
  27. D. Shin and C. Wolverton, Acta Mater., 58(2), 531 (2010). https://doi.org/10.1016/j.actamat.2009.09.031