DOI QR코드

DOI QR Code

Co-simulation of MultiBody Dynamics and Plenteous Sphere of Contacted Particles Using NVIDIA GPGPU

NVIDIA 의 GPGPU 를 이용한 수 많은 구형 접촉 입자가 포함된 다물체 동역학 해석

  • Received : 2011.12.12
  • Accepted : 2012.01.20
  • Published : 2012.04.01

Abstract

In this study, a dynamic simulation model that considers many spherical particles and multibody dynamics (MBD) entities is developed. Plenteous spherical particles are solved using the Discrete Element Method (DEM) technique and simulated on a GPU board in a PC. A fast algorithm is used to calculate the Hertzian contact forces between many spherical particles, and NVIDIA CUDA is used to increase the calculation speed. The explicit integration method is applied to solve the many spheres. MBD entities are simulated by recursive formulation. Constraints are reduced by recursive formulation, and the implicit generalized alpha method is applied to solve the dynamic model. A new algorithm is developed to simulate the DEM and MBD models simultaneously. As a numerical example, a truck car model and gear model are developed. The results show that the proposed algorithm using a general-purpose GPU in a PC has many advantages.

본 연구에서는 수 많은 입자가 포함된 다물체 동역학 모델을 시뮬레이션 하여 그 결과를 도출하였다. 수 많은 입자들은 GPU 를 적용한 이산 요소법을 이용해 풀었다. 입자들의 Contact Force 를 계산하기 위해 Fast Algorithm 이 적용되었고 계산 속도 향상을 위해 NVIDIA 사의 CUDA 프로그래밍을 하였다. 입자들간의 계산은 Explicit 적분기가 사용되었으며 다물체 동역학은 순환 공식(Recursive Formulation)을 사용 하고 Implicit 적분기를 사용하였다. 입자들과 다물체 사이의 Contact Force 를 동시에 시뮬레이션 하기 위해서 입자동역학과 다물체 동역학의 통합해석을 할 수 있는 알고리즘을 개발하였다. 수치 실험의 예로서 화물트럭의 입자 영향을 알아 보기 위한 화물트럭 모델과 대부분의 동력 전달 장치에 사용되는 기어 모델을 시뮬레이션 하였다.

Keywords

References

  1. NVIDIA Corporation, 2008, NVIDIA CUDA: Compute Unified Device Architecture, Programming Guide, in, NVIDIA Corporation, Santa Clara.
  2. NVIDIA Corporation., 2010, Tesla C2050 and Tesla C2070 Computing Processor Board; Available From: http://www.nvidia.com/docs/IO/43395/BD-04983-001_v03.pdf.
  3. Kapre, N. and DeHon, A., 2009, Performance Comparison of Single-Precision SPICE Model-Evaluation on FPGA, GPU, Cell, and multi-core Processors, in: International Conference on Field Programmable Logic and Applications, pp. 65-72.
  4. FunctionBay, Inc, 2010, RecurDyn User Manual, http://eng.functionbay.co.kr/.
  5. Cundall, P. A. and Strack, O. D. L., 1979, A Discrete Numerical Model for Granular Assemblies, Geotechnique, 29, 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  6. Hockney, R. W. and Eastwood, J. W., 1981, Computer Simulation Using Particles, McGraw-Hill, New York.
  7. Mindlin, R.D. and Deresiewicz, H., 1953, Elastic Spheres in Contact Under Varying Oblique Forces, Trans. ASME, J. Appl. Mech., 20, 327-344.
  8. Jalon, J.G. and Bayo, E., 1994, Kinematic and Dynamic Simulation of Multibody Systems, Springer-Verlag New-York.
  9. Garcia de Jalon D. J., Unda J., and Avello A., 1986, "Natural Coordinates for the Computer Analysis of Multibody Systems," Computer Methods in Applied Mechanics and Engineering, Vol. 56, pp.309-327. https://doi.org/10.1016/0045-7825(86)90044-7
  10. Wittenburg, J., 1977, Dynamics of Systems of Rigid Bodies, BF Teubner, Stuttgart.
  11. Fox, R. W. and McDonald, A. T., 1994, Introduction to Fluid Mechanics the fourth edition, John Wiley & Sons, Inc.
  12. Metariver, 2011, http://www.metariver.kr/.
  13. Mattson, W. and Rice, B. M., 1999, Neighbor Calculations Using a Modified Cell-Linked List Method, Computer Physics Communication, Vol.119 pp.135-148. https://doi.org/10.1016/S0010-4655(98)00203-3
  14. Yoon, J. S., Park, J. S., Ahn, C. O and Choi, J. H., 2011, Cosimulation of MBD(Multi Body Dynamics) and DEM of Many Spheres Using GPU Technology, Particles 2011.
  15. Yoon, J. S., Choi, J. H., Rhim, S. and Koo, J. C., 2011, Particle Dynamics Integration to MultiBody Dynamics Using GPU, ICETI 2011

Cited by

  1. Co-simulation framework of discrete element method and multibody dynamics models vol.35, pp.3, 2018, https://doi.org/10.1108/EC-07-2017-0246