DOI QR코드

DOI QR Code

Effects of Phosphorus Starvation on Fatty Acid Production by Microalgae Cultivated from Wastewater Environment

인 결핍에 따른 하수배양 미세조류의 지방산 특성 분석 연구

  • 우성근 (연세대학교 토목환경공학과 대학원) ;
  • 박준홍 (연세대학교 토목환경공학과)
  • Received : 2011.11.08
  • Accepted : 2012.05.10
  • Published : 2012.07.15

Abstract

Wastewater-adapted microalgae such as Chlorella vulgaris AG10032, Ankistrodesmus gracilis SAG278-2 and Scenedesmus quadricauda AG10308 are useful biological resources for recovering biofuel and other bio-based materials from wastewater because of their efficient removals of nitrogen and phosphorus from wastewater and their high fatty acid contents in biomass. Although the concentrations of phosphorus typically vary in wastewater environment, very little is known about the effect of phosphorus concentration, especially phosphorus starvation, on microalgal fatty acid synthesis. This is partially due to the lack of methodological establishment for algal fatty acid analysis. In this study, we compared the analysis performances of microalgal fatty acids by two different methods; one is a non-polar GC (gas chromatography) column based method, which is generally used for microbial fatty acids, and the other is a polar WAX-type GC column method, which is typically used for plant fatty acids. And then, we explored the effect of phosphorus concentration levels on fatty acid production in microalgae cultivated from wastewater. As results, the polar WAX-type column method has better ability to separate poly unsaturated fatty acids (PUFA) including $C_{18:3}$ (linolenic acid), and was found to be more applicable in analyzing fatty acids from wastewater-cultivated microalgae than the non-polar column method. The fatty acid characterization by the WAX-type column method revealed little effect of phosphorus starvation on the quantity and composition of fatty acids from wastewater-cultivated microalgae.

하수에서 배양된 미세조류인 Chlorella vulgaris AG10032, Ankistrodesmus gracilis SAG278-2, Scenedesmus quadricauda AG10308은 오폐수에서 질소 및 인 제거가 우수하고 높은 지질을 함유하고 있어서, 오폐수에서 바이오연료나 기타 바이오 기반의 자원 회수에 유용한 생물자원이다. 오폐수 환경에는 다양한 인의 농도가 존재하는데, 인의 농도 특히 인 결핍조건에 따른 조류의 지방산 특성에 대한 정보가 매우 제한적이다. 이는 표준 분석방법이 정립되어 있지 않은데 일부 기인한다. 본 연구에서는 미생물의 지방산을 분석하는데 일반적으로 사용되는 무극성 컬럼법과 식물성 지질을 분석하는데 널리 사용되는 극성 WAX-type 컬럼 GC-FID 방법의 미세조류 지방산 분석 성능을 비교 분석하였고, 하수배양 조류에 적용이 보다 적절한 방법을 이용해서 인 결핍에 의한 조류 지방산 생성특성에 미치는 영향을 평가하였다. 그 결과 무극성 컬럼 방법에 비해 극성 WAX-type 컬럼 GC 방법이 $C_{18:3}$ 지방산과 같은 고불포화지방산을 규명하는 분석능력이 우수하였고, 실제 하수배양에서 배양 분리된 미세조류의 지방산 분석에 보다 정확한 결과를 보이었다. 이 WAX-type 컬럼 방법으로 인 결핍 영향을 분석한 결과, 미세조류의 지방산 조성과 생성량은 인의 농도 변화에 크게 영향을 받지 않음을 밝히었다.

Keywords

References

  1. 이장호, 박준홍(2010) 실제 하수조건에서 고지질 함량 조류자원의 생체생성과 하수처리 특성 분석. 대한환경공학회, Vol. 32 No. 4, pp. 333-340.
  2. Abidi, S.L. (2001) Chromatographic analysis of plant sterols in foods and vegetable oils. Journal of Chromatography A, Vol. 935, 173-201. https://doi.org/10.1016/S0021-9673(01)00946-3
  3. Buyer, J.S. (2006) Rapid and sensitive FAME analysis of bacteria by cold trap injection gas chromatography. Journal of Microbiological Methods, Vol. 67, pp. 187-190. https://doi.org/10.1016/j.mimet.2006.03.017
  4. Chinnasamy, S., Bhatnagar, A., Hunt, R.W., and Das, K.C. (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol., Vol. 101, pp. 3097-3105. https://doi.org/10.1016/j.biortech.2009.12.026
  5. Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv., Vol. 25, pp. 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  6. Ehimen, E.A., Sun, Z.F., and Carrington, C.G. (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel, Vol. 89, pp. 677-684. https://doi.org/10.1016/j.fuel.2009.10.011
  7. Hatti-Kaul, R., Tornvall, U., Gustafsson, L., and Borjesson, P. (2007) Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective. Trends in Biotechnology., Vol. 25, pp. 119-124. https://doi.org/10.1016/j.tibtech.2007.01.001
  8. IEA (2007) World Energy Outlook 2007. International Energy Agency, Paris.
  9. IPCC (2007) Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva.
  10. Johnson, M.B. and Wen, Z. (2009) Production of Biodiesel Fuel from the Microalga Schizochytrium limacinum by Direct Transesterification of Algal Biomass. Energy & Fuels, Vol. 23, pp. 5179-5183. https://doi.org/10.1021/ef900704h
  11. Kromkamp, J., van den Heuvel, A., and Mur, L.R. (1989) Phosphorus uptake and photosynthesis by phosphate-limited cultures of the cyanobacterium Microcystis aeruginosa. British Phycological Journal. Vol. 24, No. 4, pp. 347-355. https://doi.org/10.1080/00071618900650361
  12. Li, X., Hu, H.Y., Gan, K., and Sun, Y.X. (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga S. quadricauda AG10308 Bioresour. Technol., Vol. 101, pp. 5494-5500. https://doi.org/10.1016/j.biortech.2010.02.016
  13. Martinez, M.E., Sanchez, S., Jimenez, J.M., El Yousfi, F., and Munoz, L. (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol., Vol. 73, pp. 263-272. https://doi.org/10.1016/S0960-8524(99)00121-2
  14. Meier, M.A.R., Metzger, J.O., and Schubert, U.S. (2007) Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev., Vol. 36, pp. 1788-1802. https://doi.org/10.1039/b703294c
  15. Mondala, A., Liang, K., Toghiani, H., Hernandez, R., and French, T. (2009) Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour. Technol., Vol. 100, pp. 1203-1210. https://doi.org/10.1016/j.biortech.2008.08.020
  16. Mulbry, W., Kondrad, S., and Buyer, J. (2008) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. Journal of Applied Phycology, Vol. 20, pp. 1079-1085. https://doi.org/10.1007/s10811-008-9314-8
  17. Ou, M.M., Wang, Y., and CAI, W.M. (2005) Physiological and Biochemical Changes in Microcystis aeruginosa Qutz. in Phosphorus Limitation. Journal of Integrative Plant Biology, Vol. 47, No. 6, pp. 692-702. https://doi.org/10.1111/j.1744-7909.2005.00106.x
  18. Park, J.B.K., Craggs, R.J., and Shilton, A.N. (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol,. Vol. 102, pp. 35-42. https://doi.org/10.1016/j.biortech.2010.06.158
  19. Park, S. Brett, M.T., Mullar-Navarra, D.C., and Goldman, C.R. (2002) Essential fatty acid content and the phosphorus to carbon ratio in cultured algae as indicators of food quality for Daphnia. Freshwater Biology. Vol. 47, pp. 1377-1390. https://doi.org/10.1046/j.1365-2427.2002.00870.x
  20. Rhee, G.-Y. (1982) Effects of environmental factors and their interactions on phytoplankton growth. Adv. Microb. Ecol. Vol. 6, pp. 33-74. https://doi.org/10.1007/978-1-4615-8318-9_2
  21. Rittmann, B.E. (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnology and Bioengineering, Vol. 100, pp. 203-212. https://doi.org/10.1002/bit.21875
  22. Robinson, P.K., Reeve, J.O., and Goulding, K.H. (1989) Phosphorus uptake kinetics of immobilized Chlorella in batch and continuous- flow culture. Enzyme Microb. Technol. Vol. 11, pp. 590-596. https://doi.org/10.1016/0141-0229(89)90087-2
  23. Rosegrant, M.W., Msangi, S., Sulser, T., and Valmonte-Santos, R. (2006) Biofuels and the Global Food Balance, International Food Policy Research Institute, Washington DC, USA.
  24. Samori, C., Torri, C., Samori, G., Fabbri, D., Galletti, P., Guerrini, F., Pistocchi, R., and Tagliavini, E. (2010) Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour. Technol., Vol. 101, pp. 3274-3279. https://doi.org/10.1016/j.biortech.2009.12.068
  25. Serebryakova, L.T. and Tsygankov, A.A. (2007) Two-Stage System for Hydrogen Production by Immobilized Cyanobacterium Gloeocapsa alpicola CALU 743. Biotechnol. Prog., Vol. 23, pp. 1106-1110. https://doi.org/10.1002/bp070168p
  26. Singh, A., Nigam, P.S., and Murphy, J.D. (2011) Renewable fuels from algae: An answer to debatable land based fuels. Bioresour. Technol., Vol. 73, pp. 263-272.
  27. Singh, S.P. and Singh, D. (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew Sust Energy Rev., Vol. 14, pp. 200-216. https://doi.org/10.1016/j.rser.2009.07.017
  28. Somerville, C. (2006) The billion-ton biofuels vision. Science, Vol. 312, pp. 1277. https://doi.org/10.1126/science.1130034
  29. Wang, K.S. and Chai, T.J. (1994) Reduction in omega-3 fatty acids by UV-B irradiation in microalgae Journal of Applied Phycology, Vol. 6, pp. 415-421. https://doi.org/10.1007/BF02182158
  30. Yoo, C., Jun, S.-Y., Lee, J.-Y., Ahn, C., and Oh, H.-M. (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol., Vol. 101, pp. S71-S74. https://doi.org/10.1016/j.biortech.2009.03.030
  31. Zhukova, N.V. and Aizdaicher, N.A. (1995) Fatty acid composition of 15 species of marine microalgae. Phytochemistry. Vol. 39, pp. 351-356. https://doi.org/10.1016/0031-9422(94)00913-E