DOI QR코드

DOI QR Code

Analysis of Contaminant Transport in the Ground using the Lattice-Boltzmann Method

격자 볼츠만 방법에 의한 지반 내 오염물질의 거동 분석

  • 강동훈 (연세대학교 공과대학 토목환경공학과) ;
  • 윤태섭 (연세대학교 공과대학 토목환경공학과)
  • Received : 2012.06.12
  • Accepted : 2012.10.05
  • Published : 2012.11.15

Abstract

The conventional approach to evaluate the contaminant transport in soils adopts the macro-scale implementation while the pore configuration and network is a dominant factor to determine the fate of contaminant. However, the observation of fate and transport at pore scale may not be readily approachable because of the computational expenses to solve Navier-Stokes equation. We herein present the 2D Lattice-Boltzmann method that enables to assess the local fluid velocity and density efficiently for the case of single phase and multi-components. The solute fate spatio-temperal space is explicitly determined by the advection of fluid flow. Two different types of idealized pore space provides the path of fluid. Also, solute transport, the velocity field and average concentration of solute are computed in steady state. Results show that the pore geometry such as tortuosity mainly affect the solute fate. It highlights the significance of the pore configuration and shape in granular soils and rock discontinuity in spite of the equivalent porosity.

오염물질의 거동은 간극 배열과 연결망에 의해 결정되지만 흙에서 오염물질의 이동을 계산하는 전통적인 접근은 거시 스케일에서 적용된다. 나비에-스토크스 방정식을 풀기 위해 소요되는 컴퓨팅 비용 때문에 간극 스케일에서 이동과 결과를 관찰하기 쉽지 않다. 본 논문에서는 단일상 다성분 유체유동에서 국부적인 유속과 밀도를 효과적으로 평가할 수 있는 격자 볼츠만 방법에 대해 설명한다. 오염물질의 시공간적 거동은 유체 유동의 이송에 의해 명시적으로 결정된다. 두 가지 형태의 이상화된 간극은 유체의 경로를 제공한다. 또한 오염물질 이동, 유속장, 오염물질의 평균 농도는 정상상태의 유동에서 계산된다. 굴곡비와 같은 간극 형상은 오염물질 거동의 영향을 준다. 이는 흙이나 암반의 불연속면에서 동일한 간극률를 가져도 간극의 배열과 형상의 중요함을 강조한다.

Keywords

References

  1. Bear, J. (1988) Dynamics of fluids in porous media, Dover publications, New York.
  2. Chen, S. and Doolen, G. D. (1998) Lattice Boltzmann method for fluid flows, Annual review of fluid mechanics, Vol. 30, pp. 329-364. https://doi.org/10.1146/annurev.fluid.30.1.329
  3. He, X. and Luo, L. S. (1997a) Lattice Boltzmann model for the incompressible Navier-Stokes equation, Journal of statistical physics, Vol. 88, pp. 927-944. https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
  4. He, X. and Luo, L. S. (1997b) A priori derivation of the lattice Boltzmann equation. Physical Review E, Vol. 55, pp. 6333-6336. https://doi.org/10.1103/PhysRevE.55.R6333
  5. Huysmans, M. and Dassargues, A. (2005) Review of the use of Peclet numbers to determine the relative importance of advection and diffusion in low permeability environments. Hydrogeology Journal, Vol. 13, pp. 895-904. https://doi.org/10.1007/s10040-004-0387-4
  6. Keehm, Y., Mukerji, T., and Nur, A. (2003) Computational rock physics: Lattice-Boltzmann fluid flow simulation in porous media and its applications. Fusion Technology of Geosystem Engineering, Rock Engineeing and Geophysical Exploration, pp. 661-668.
  7. Mohamad, A. A. (2011) Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes, Springer, London.
  8. Narsilio, G., Kress, J., and Yun, T. S. (2010) Characterization of conduction phenomena in soil at the particle-scale: Finite element analyses in conjunction with synthetic 3D imaging, Computers and Geotechnics, Vol. 37, pp. 828-836. https://doi.org/10.1016/j.compgeo.2010.07.002
  9. Ramstad, T., Oren, P. E., and Bakke, S. (2010) Simulation of twophase flow in reservoir rocks using a lattice Boltzmann method. SPE Journal, Vol. 15, pp.9 17-927. https://doi.org/10.2118/124617-PA
  10. Reis, T. and Phillips, T. (2007) Lattice Boltzmann model for simulating immiscible two-phase flows. Journal of Physics A: Mathematical and Theoretical, Vol. 40, pp. 4033-4053. https://doi.org/10.1088/1751-8113/40/14/018
  11. Sharma, H. D. and Reddy, K. R. (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies, John Wiley & Sons, Inc., Hoboken, New Jersey.
  12. Yoshino, M. and Inamuro, T. (2003) Lattice Boltzmann simulations for flow and heat/mass transfer problems in a three-dimensional porous structure, International journal for numerical methods in fluids, Vol. 43, pp.183-198. https://doi.org/10.1002/fld.607
  13. Zhang, X., Deeks, L. K., Glyn Bengough, A., Crawford, J. W., and Young, I. M. (2005). Determination of soil hydraulic conductivity with the lattice Boltzmann method and soil thin-section technique. Journal of hydrology, Vol. 306, pp. 59-70. https://doi.org/10.1016/j.jhydrol.2004.08.039
  14. Zou, Q. and He, X. (1996). On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model. Arxiv preprint comp-gas/9611001.