[논문] 열처리공학회지, 제25권 제3호(2012) J. of the Korean Society for Heat Treatment, Vol. 25, No. 3, (2012) pp. 134~137

전자빔 조사 에너지에 따른 In₂O₃ 박막의 특성 변화

허성보·천주용·이영진·이학민·김대일[†] 울산대학교 첨단소재공학부

Effect of Electron Irradiation Energy on the Properties of In₂O₃ Thin Films

Sung-bo Heo, Joo-Yong Chun, Young-Jin Lee, Hak-Min Lee, Daeil Kim[†] School of Materials Science and Engineering, University of Ulsan, 680-749, Korea

Abstract We have considered the effect of electron irradiation energy of 300, 600 and 900 eV on structural, electrical and optical properties of In_2O_3 films prepared with RF magnetron sputtering. In this study, the thin film crystallization, optical transmittance and sheet resistance are dependent on the electron's irradiation energy. The electron irradiated In_2O_3 films at 900 eV are grown as a hexagonal wurtzite phase. The sheet resistance decreases with a increase in electron irradiation energy and In_2O_3 film irradiated at 900 eV shows the lowest sheet resistance of $110 \Omega/\Box$. The optical transmittance of In_2O_3 films in a visible wave length region also depends on the electron irradiation energy. The film that at 900 eV shows the higher figure of merit than another films prepared in this study. *(Received April 16, 2012; Revised May 8, 2012; Accepted May 21, 2012)*

Key words: In₂O₃, Magnetron sputter, Electron irradiation, XRD, AFM

1. 서 론

In₂O₃, SnO₂ 그리고 ZnO 박막은 가시광(약 380~780 nm) 영역에서의 높은 투과도와 적외선 영역에서 높은 반사율을 보이는 투명산화막으로써 주목받는 재료이다. 특히 비화학양론비(non-stoichiometric)로 성장된 박막은 N형 반도체 특성을 갖기 때문에 광전 자소자, 액정표시소자와 태양전지의 투명전극 재료로 이용되고 있으며, 향 후에도 이에 대한 수요는 계속 증가될 전망이다[1-3].

이러한 투명전극 박막을 제조하는 방법으로 화학기 상증 착법(Chemical Vapor Deposition; CVD)[4], Spray Pyrolysis[5]와 같은 화학적 증착법, 그리고 마그네트론 스퍼터링[6], 펄스레이저 증착[7], 전자선 증발[8] 등의 물리적 증착법이 개발되어 왔다.

최근 Senthilkumar[9] 등은 전자범증발법(Electron beam evaporation)으로 성장시킨 In₂O₃ 박막의 구 조와 열처리 온도의 관계를 보고하였고, Morikawa [10] 등은 직류 마그네트론 스퍼터링 방법으로 In₂O₃ 박막을 성장시킨 후에, 진공과 대기 중에서 각각 열처리를 수행하여 박막의 결정화와 전기저항의 관계를 발표하였다. 일반적으로 In_2O_3 박막은 유리기 판과 접착력이 우수하고 ZnO 계열의 투명전극 소재 보다 상대적으로 우수한 전기전도도를 갖는 장점을 갖지만 In의 높은 결정화 온도에 의한 기판재료의 선택제약성이 단점이다. 따라서 최근에는 정밀하게 제어된 에너지를 가진 전자를 표면에 조사하여박막의 물성을 개선하고 기판 재료의 선택성을 넓히는 연구 가 활발히 진행되고 있다.

본 연구에서는 높은 증착율, 두께 균일도 그리고 박막의 조성비 조절이 용이한 Radio Frequency (RF) 마그네트론 스퍼터를 이용하여 낮은 전기 비저 항과 높은 가시광 투과성을 갖는 In₂O₃ 박막을 제작 하고 증착 후 전자빔 조사 에너지에 따른 In₂O₃ 박 막의 전기적, 광학적, 구조적 변화를 연구 하였다.

2. 실험 방법

Fig. 1에 나타난 전자빔 조사 장치와 RF 마그네트 론 스퍼터 장치를 사용하여 유리 기판(코닝1747) 위

[†]Corresponding author. E-mail : dkim84@ulsan.ac.kr

Fig. 1. A schematic diagram of electron beam source and magnetron sputtering system.

에 두께 100 nm의 In₂O₃ 박막을 증착하였다. 증착 이전에 타켓 표면의 오염원을 제거하기 위하여 15분 동안 예비 스퍼터링을 수행하였고, 유리기판(20×20 mm²)은 아세톤, 메탄올, 증류수의 순서로 세척하고 질소가스로 건조하였다.

스퍼터링 타켓으로는 직경 3인치의 고순도 In₂O₃ (순도 : 99.95%)을 사용하여 증착율(10 nm/min)을 확 보하고 증착시간을 조절하여 100 nm의 두께를 갖는 박막을 증착하였으며 타켓과 기판사이의 간격은 50 mm로 고정하였다. 챔버의 초기 진공도는 7×10⁻⁶ torr로 배기하였고, 공정 진공도는 1×10⁻³ torr로 유지하였다. 증착된 In₂O₃ 박막에 전자빔 가속기 (INFO-G60, 인포비온, Ar 플라즈마 방전파워 : 450 W)를 사용하여 300 eV, 600 eV, 900 eV의 에너 지를 갖는 전자빔을 30분간 조사 하였다. 전자빔 조 사 공정의 진공도는 7×10⁻⁴ torr로 유지하였으며, Ar 가스는 10 sccm으로 일정하게 주입하였다.

전자빔 조사 에너지에 따른 가시광 영역에서의 광 투과도 (약 380~780 nm)는 자외선-가시광 분광기 (Cary 5000, Varian)를 사용하여 측정하였고, 전기적 특성은 홀효과 측정기(HMS-5500, Ecopia)를 이용하 여 측정하였다. 또한 박막의 결정성과 거칠기 변화는 Cu-Kα(0.154 nm)선을 이용한 X 선 회절기(X'pert PRO MRD, Philps)와 원자간력현미경(Atomic

Fig. 2. XRD pattern as a function of electron radiation energy. (a) As-deposition, (b) Electron Irradiation at 300 eV, (c) Electron Irradiation at 600 eV, (d) Electron Irradiation at 900 eV.

Force Microscope; AFM)을 이용하여 측정하였으며, 전기광학적 특성 변화는 Figure of Merit(FOM) 수 치로 분석하였다.

3. 결과 및 고찰

Fig. 2는 전자빔 조사에 따른 In₂O₃ 박막의 XRD 패턴을 보여주고 있다. 전자빔 조사 이전과 300, 600 eV에서 결정화 되지 못한 In₂O₃ 박막이 900 eV 조건에서는 (222) 방향으로 우선 성장한 것을 알 수 있다.

이는 박막에 충돌하는 전자빔 에너지가 증가함에 따라 증착되는 입자의 결정화 과정을 거치게 되면서 더욱 치밀한 박막이 형성되기 때문이다[11].

Fig. 3에 원자간력현미경으로 측정된 표면 이미지 와 평균 거칠기(Average Roughness; Ra) 값을 나 타내었다. 투명전극의 거친 표면은 비저항 증가와 가 시광 투과도 감소의 원인이 되므로 표면거칠기는 In₂O₃ 박막의 투명전극 소재 적용에 중요한 부분이다.

전자빔 조사 이전 박막의 평균거칠기는 3.4 nm이 었으나, Fig. 3(d)와 같이 900 eV로 전자빔 조사를 수행한 박막은 2.3 nm로 전자빔 조사 이전과 비교하 여 거칠기가 감소한 것을 확인할 수 있었다.

Fig. 4는 투명한 전극소재로의 응용을 위하여 전자 빔 조사 에너지에 따른 In₂O₃ 박막의 가시광 투과도 를 측정한 결과이다. 가시광영역에서 전자빔 조사 이

Fig. 3. Surface morphology of In_2O_3 films post deposition annealed electron radiation energy. (a) As-deposition, RMS roughness 3.4 nm, (b) Electron Irradiation at 300 eV RMS roughness 3.2 nm, (c) Electron Irradiation at 600 eV, RMS roughness 2.7 nm, (d) Electron Irradiation at 900 eV, RMS roughness 2.3 nm.

Fig. 4. Optical transmittance of the In_2O_3 films as a function of electron radiation energy.

전의 평균 투과도는 78.3%이었으나 900 eV 에너지 조사 후 80.1%로 향상됨을 알 수 있었다.

이러한 가시광 투과도의 향상은 전자빔 조사로 인 해 결정럽계(Grain boundary)가 감소하여 박막의 가시광 투과도가 향상된 것으로 사료된다[12, 13].

이와 같이 전자빔 조사를 통한 광학적 투과도의

향상은 In₂O₃ 박막을 디스플레이 또는 태양전지의 투명전도막으로 응용하기에 매우 적합한 것을 알 수 있다.

Table 1은 전자빔 조사 에너지에 따른 In₂O₃ 박막 의 면저항과 평균 가시광 투과도, 그리고 Figure of Merit(FOM)비교 결과이다. FOM 수치는[14,15] In₂O₃ 박막과 같은 투명전극 소재의 전기광학적 물 성을 비교할 수 있는 척도로서 관련 수식은 다음과 같다.

Figure of Merit (FOM) = T^{10}/R_{sh}

위 수식에서 T는 가시광 영역에서 광 투과도 이 며, R_{sh}는 박막의 면저항이다. 투명전도막의 특성은 가시광 투과율과 전기전도도에 민감하게 의존하지만, 일반적으로 투과율과 면저항은 서로 반비례 되는 관 계를 갖기 때문에 적절한 가시광 투과도와 면저항의 선택적인 제어가 필요하다[13].

본 연구에서 전자빔 조사 이전의 In_2O_3 박막의 FOM 수치는 $4.61 \times 10^{-4} \Omega^{-1}$ 이었으나, 900 eV 전자

Table 1. Variation of sheet resistance, optical transmittance and figure of merit (FOM) of In_2O_3 films as a function of electron irradiation energy

	sheet resistance(Ω/\Box)	Transmittance(%)	$FOM(10^{-4}\Omega^{-1})$
As deposition	190	78.4	4.61
450W-300eV	150	79.0	6.32
450W-600eV	130	79.3	7.56
450W-900eV	110	80.1	9.88

빔 에너지를 조사한 이후 FOM 수치는 9.88×10^{-4} Ω^{-1} 로 증가하여 박막의 전기광학적 특성이 향상되었 음을 알 수 있었다. 이 결과로부터 증착 후 전자빔 조사 에너지와 In_2O_3 박막의 전기전도도, 가시광 투 과도는 비례 관계에 있으며, 전자빔 조사 에너지가 900 eV 일 때, 최적의 In_2O_3 박막이 성장됨을 알 수 있었다.

4.결 론

RF 마그네트론 스퍼터를 이용하여 100 nm 두께의 In₂O₃ 박막을 유리기판에 증착하고 30분간 전자빔을 조사하여 전자빔 에너지에 따른 박막의 결정화, 표 면거칠기 그리고 전기적, 광학적 특성 변화를 분석 하였다.

 In_2O_3 박막의 결정화는 전자빔 조사 에너지가 900 eV 일 때, (222) 배항성을 보였으며 박막의 표면거 칠기 또한 2.3 nm까지 감소하였다. FOM 수치는 전 자빔 조사를 하지 않은 In_2O_3 박막의 경우 4.61× $10^4 \Omega^{-1}$ 에서 900 eV 전자빔 조사 후 $9.88 \times 10^4 \Omega^{-1}$ 까지 약 2배로 증가 하여 전자빔 조사 공정이 In_2O_3 투명 전도막의 특성을 개선시킴을 알 수 있 었다.

참고문헌

- S. B. Heo, H. M. Lee, C. W. Jung, S. K. Kim, Y. J. Lee, Y. S. Kim, Y. Z. You and D. Kim : J. Kor. Soc. Heat treat, 24 (2011) 31.
- 2. Z. You and J. Dong : Microelectrode J, 38 (2007) 108.
- U. Betz, M. Olsson, J. Martly and M. Escola : Surf. Coat. Technol, 200 (2006) 5751.
- K. Maki, N. Komiya and A. Suzuki : Thin Solid Films, 445 (2003) 224.
- A. Nakaruk, D. Ragazzon and C.C. Sorrell : J. Analytical and Applied Pyrolysis 88 (2010) 98.
- J. H. Kwak and S. H. Cho : J. Korean Vacuum Soc, 19 (2010) 224.
- F. O. Adurodija, L. Semple and R. Bruning : Thin Solid Films, 492 (2005) 153.
- 8 V. Korobov, M. Leibovitch and Y. Shapira : Appl. Phys. Lett, **65** (1994) 2290.
- 9 V. Senthilkumar and P. Vickraman : Curr. Appl. Phys, 10 (2010) 880.
- H. Morikawa and M. Fujita : Thin Solid Films, 359 (2000) 61.
- 11. D. Kim : J. Kor. Soc. Heat treat, 24 (2011) 199.
- K. Shimakawa and T. Itoh : Jpn. J. Appl. Phys, 46 (2007) 24.
- S. B. Heo, Y. J. Lee, H. M. Lee, S. K. Kim, Y. S. Kim, Y. M. Kong and D. Kim, J. Kor. Soc. Heat treat, 24 (2011) 338.
- 14. G. Haacke : J. Appl. Phys, 47 (1976) 4086.
- 15. D. Kim : Appl. Surf. Sci, 257 (2010) 704.