DOI QR코드

DOI QR Code

불연속면 연결구조의 삼차원 가시화 기법에 관한 연구

Methods of Discontinuity Network Visualization in 3-D

  • 노영환 (부경대학교 에너지자원공학과) ;
  • 엄정기 (부경대학교 에너지자원공학과)
  • Noh, Young-Hwan (Dept. of Energy Resources Engineering, Pukyong National University) ;
  • Um, Jeong-Gi (Dept. of Energy Resources Engineering, Pukyong National University)
  • 투고 : 2012.12.06
  • 심사 : 2012.12.26
  • 발행 : 2012.12.31

초록

암반의 구조적 특성에 대한 확고한 이해는 지반구조물의 효과적인 설계 및 유지관리에 있어서 매우 중요한 요소이다. 이는 암반의 강도, 변형 및 수리지질학적 특성이 주로 암반에 존재하는 불연속면의 연결구조 특성에 좌우되기 때문이다. 그동안 암반의 구조적 특성에 대한 연구에 있어서 상당한 진전이 있었음에도 불구하고 불연속면 분포의 복잡성으로 인하여 암반의 삼차원적 구현 및 가시화에 기반한 지질공학적 해석은 드문 실정이다. 이 연구는 암반의 불연속면 및 불연속면의 연결구조를 삼차원적으로 구현하고 가시화하는 기법을 제시하였다. 이를 위하여 원판형으로 가정한 불연속면의 비선형 방정식을 유도하고 불연속면 교차선과 등가파이프의 위치를 산정할 수 있는 대수학적 알고리즘이 제시되었으며, 또한 연산과정을 수행하는 전산모듈이 작성되었다. 이 연구에서 개발한 불연속면 연결구조의 삼차원적 구현 및 가시화 기법은 불연속체 기반의 암반강도 및 변형성에 관한 연구 또는 수리지질학적 특성에 관한 연구를 수행함에 있어서 활용도가 높을 것으로 판단된다.

A sound understanding of the structural characteristics of fractured rock masses is important in designing and maintaining earth structures because their strength, deformability, and hydraulic behavior depend mainly on the characteristics of discontinuity network structures. Despite considerable progress in understanding the structural characteristics of rock masses, the complexity of discontinuity patterns has prevented satisfactory analysis based on a 3-D rock mass visualization model. This paper presents the results of studies performed to develop rock mass visualization in 3-D to analysis the mechanical and hydraulic behavior of fractured rock masses. General and particular solutions of non-linear equations of disk-shaped fractures have been derived to calculated lines of intersection and equivalent pipes. Also, program modules have been developed to perform the calculations. The procedures developed for the 3-D fractured rock mass visualization model can be used to characterize rock mass geometry and network systems effectively. The results obtained in this study will be refined and then combined for use as a tool for assessing geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

키워드

참고문헌

  1. Bang, S. H., Jeon, S., and Choe, J., 2003, Determination of equivalent hydraulic conductivity of rock mass using three-dimensional discontinuity network, Journal of Korean Society for Rock Mechanics, 13, 52-63.
  2. Choi, J., Um, J. G., Kwon, H. H., and Shim, Y. S., 2010, Relationship between characteristics of fracture distribution and acidity of mine drainage at the Il- Gwang Mine, The Journal of Engineering Geology, 20, 425-436.
  3. Heo, I. S., Um, J. G., Kim, Y. P., Kim, K. H., and Lee, Y. K, 2006, A case study on stochastic fracture network modeling for rock slopes of Busan-Ulsan highway( reach 5), The Journal of Engineering Geology, 16, 337-349.
  4. Hudson, J. and La Pointe, 1980, Printed circuits for studying rock mass permeability, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, 17, 297-301. https://doi.org/10.1016/0148-9062(80)90812-8
  5. Kulatilake, P. H. S. W., Um, J. G., Wang, M., Escandon, R. F., and Narvaiz, J., 2003, Stochastic fracture geometry modeling in 3-D including validations for a part of Arrowhead East Tunnel, California, USA, Engineering Geology, 70, 131-155. https://doi.org/10.1016/S0013-7952(03)00087-5
  6. Kulatilake, P. H. S. W., Um, J. G., and Park, J. Y., 2004, Estimation of rock mass strength and deformability in 3-D for a 30m cube at a depth of 485m at Aspo Hard Rock Laboratory, Geotechnical and Geological Engineering, 22, 313-330. https://doi.org/10.1023/B:GEGE.0000025033.21994.c0
  7. Kulatilake, P. H. S. W., Wathugala, D. N. and Stephansson, O., 1993, Joint Network modeling including a validation to an area in Strip mine, International Journal of Rock Mechanics and Mining Sciences, 30, 503-526. https://doi.org/10.1016/0148-9062(93)92217-E
  8. Priest, S. D. and Hudson, J., 1976, Discontinuity spacing in rock, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, 13, 135-148.
  9. Priest, S. D. and Hudson, J., 1981, Estimation of discontinuity spacing and trace length using scanline surveys, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, 18, 183-197. https://doi.org/10.1016/0148-9062(81)90973-6
  10. Ryu, D. W., Kim, Y. M. and Lee, H. K., 2002a, A study of statistical analysis of rock joint size and intensity by stereological approach, Journal of Korean Society for Rock Mechanics, 12, 10-18.
  11. Ryu, D. W., Kim, Y. M., and Lee, H. K., 2002b, A Study of statistical analysis of rock joint directional data, Jounal of Korean Society for Rock Mechanics, 12, 19-30.
  12. Song, J. J. and Lee, C. I., 2001, Study on the estimation of joint length distribution using window sampling, Journal of the Korean Geotechnical Society, 17, 21- 30.
  13. Song, M. Y. and Park, C. S., 2002, Practical visualization of discontinuity distribution in subsurface using borehole image analysis, The Journal of Engineering Geology, 12, 23-34.
  14. Wang, M., Kulatilake, P. H. S. W., Um, J. G., and Narvaiz, J., 2002, Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling, International Journal of Rock Mechanics and Mining Sciences, 39, 887-904. https://doi.org/10.1016/S1365-1609(02)00067-9

피인용 문헌

  1. Development of the 3-D Fracture Network Analysis and Visualization Software Modules vol.23, pp.4, 2013, https://doi.org/10.7474/TUS.2013.23.4.261