DOI QR코드

DOI QR Code

Hypoglycemic Effect of Sargassum ringgoldianum Extract in STZ-induced Diabetic Mice

  • Lee, Chae-Won (Department of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2011.11.22
  • Accepted : 2012.03.08
  • Published : 2012.03.31

Abstract

This study was designed to investigate whether Sargassum ringgoldianum extract may inhibit ${\alpha}$-glucosidase and ${\alpha}$-amylase activities, and alleviate postprandial hyperglycemia in streptozotocin-induced diabetic mice. The $IC_{50}$ values of Sargassum ringgoldianum extract against ${\alpha}$-glucosidase and ${\alpha}$-amylase were 0.12 mg/mL and 0.18 mg/mL, respectively, which evidenced higher activities than those of acarbose. The blood glucose levels of the Sargassum ringgoldianum extract administered group were significantly lower compared to the control group in the streptozotocin-induced diabetic mice. Moreover, the area under the two-hour blood glucose response curve was significantly reduced and the absorption of dietary carbohydrates was delayed after administration of Sargassum ringgoldianum extract in the diabetic mice. Therefore, these results indicated that Sargassum ringgoldianum extract may help decrease the postprandial blood glucose level via inhibiting ${\alpha}$-glucosidase.

Keywords

References

  1. Roper NA, Bilous RW, Kelly WF, Unwin NC, Connolly VM. 2002. Cause-specific mortality in a population with diabetes. Diabetes Care 25: 43-48. https://doi.org/10.2337/diacare.25.1.43
  2. Fos CS, Coady S, Sorlie PD, D'Agostino Sr RB, Pencina MJ, Vasan RS, Meigs JB, Levy D, Savage PJ. 2007. Increasing cardiovascular disease burden due to diabetes mellitus: the framingham heart study. Circulation 115: 1544-1150. https://doi.org/10.1161/CIRCULATIONAHA.106.658948
  3. Baron AD. 1998. Postprandial hyperglycaemia and a-glucosidase inhibitors. Diabetes Res Clin Pract 40(suppl): S51-S55. https://doi.org/10.1016/S0168-8227(98)00043-6
  4. Ratner RE. 2001. Controlling postprandial hyperglycemia. Am J Cardiol 8(suppl): 26H-31H.
  5. Lebovitz HE. 1997. Alpha-glucosidase inhibitors. Endocrinol Metabol Clin North Am 26: 539-551. https://doi.org/10.1016/S0889-8529(05)70266-8
  6. Fernando MR, Wickramasingle N, Thabrew MI, Ariyananda PL, Karunanayake EH. 1991. Effect of Artocarpus heterophyllus and Asteracanthus longifolia on glucose tolerance in normal human subjects and inmaturity-onset diabetic patients. J Ethnopharmacol 31: 277-282. https://doi.org/10.1016/0378-8741(91)90012-3
  7. Welsh PA, Lachance CA, Wasserman BP. 1989. Dietary phenolic compounds: inhibition of $Na^{+}$-dependent D-glucose uptake in rat intestinal brush border membrane vesicles. J Nutr 119: 1698-1704. https://doi.org/10.1093/jn/119.11.1698
  8. Bhandari MR, Anurakkun NJ, Hong G, Kawabata J. 2008. $\alpha$-Glucosidase and $\alpha$--amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem 106: 247-252. https://doi.org/10.1016/j.foodchem.2007.05.077
  9. Hanefeld M. 1998. The role of acarbose in the treatment of non-insulindependent diabetes mellitus. J Diabetes Complicat 12: 228-237. https://doi.org/10.1016/S1056-8727(97)00123-2
  10. Yuan YV, Walsh NA. 2006. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol 44: 1144-1150. https://doi.org/10.1016/j.fct.2006.02.002
  11. Chandini SK, Ganesan P, Bhaskar N. 2008. In vitro antioxidant activities of three selected brown seaweeds of India. Food Chem 107: 707-713. https://doi.org/10.1016/j.foodchem.2007.08.081
  12. Kang JY, Khan MNA, Park NH, Cho JY, Lee MC, Fujii H, Hong YK. 2008. Antipyretic, analgesic, and anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thunbergii in mice. J Ethnopharmacol 116: 187-190. https://doi.org/10.1016/j.jep.2007.10.032
  13. Pushpamali WA, Nikapitiya C, De Zoysa M, Whang I, Kim SJ, Lee J. 2008. Isolation and purification of an anticoagulant from fermented red seaweed Lomentaria catenata. Carbohydr Polym 73: 274-279. https://doi.org/10.1016/j.carbpol.2007.11.029
  14. Kwon MJ, Nam TJ. 2006. Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci 79: 1956-1962. https://doi.org/10.1016/j.lfs.2006.06.031
  15. Kuda T, Ikemori T. 2009. Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chem 112: 575-581. https://doi.org/10.1016/j.foodchem.2008.06.008
  16. Nakai M, Kageyama N, Nakahara K, Miki W. 2006. Phlorotannins as radical scavengers from the extract of Sargassum ringgoldianum. Marine Biotechnology 8: 409-414. https://doi.org/10.1007/s10126-005-6168-9
  17. Heo SJ, Park EJ, Lee KW, Jeon YJ. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 96: 1613-1623.
  18. Yang HP. 2007. Antioxidant and antitumor activities of enzymatic extracts from Sargassum coreanum. PhD Dissertation, Cheju National University, Jeju, Korea.
  19. Athukorala Y, Lee KW, Kim SK, Jeon YJ. 2007. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour Technol 98: 1711-1716. https://doi.org/10.1016/j.biortech.2006.07.034
  20. Athukorala Y, Jeon YJ. 2005. Screening for angiotensin 1-converting enzyme inhibitory activity of Ecklonia cava. J Food Sci Nutr 10: 134-139. https://doi.org/10.3746/jfn.2005.10.2.134
  21. Ren D, Noda H, Amano H, Nishino T, Nishizawa K. 1994. Study on antihypertensive and antihyperlipidemic effects of marine algae. Fisheries Science 60: 83-88. https://doi.org/10.2331/fishsci.60.83
  22. Min KH, Kim HJ, Jeon YJ, Han JS. 2011. Ishige okamurae ameliorates hyperglycemia and insulin resistance in C57BL/ KsJ-db/db mice. Diabetes Res Clin Pract 93: 70-76. https://doi.org/10.1016/j.diabres.2011.03.018
  23. Watanabe J, Kawabata J, Kurihara H, Niki R. 1997. Isolation and identification of alpha-glucosidase inhibitors from tochucha (Eucommia ulmoides). Biosci Biotechnol Biochem 61: 177-178. https://doi.org/10.1271/bbb.61.177
  24. Kim JS. 2004. Effect of Rhemanniae radix on the hyperglycemic mice induced with streptozotocin. J Korean Soc Food Sci Nutr 33: 1133-1138. https://doi.org/10.3746/jkfn.2004.33.7.1133
  25. Hasenah A, Houghton PJ, Soumyanath A. 2006. $\alpha$-Amylase inhibitory activity of some Malaysian plants used to treat diabetes: with particular reference to Phyllanthus amarus. J Ethnopharmacol 107: 449-455. https://doi.org/10.1016/j.jep.2006.04.004
  26. Kim KY, Nama KA, Kurihara H, Kim SM. 2008. Potent $\alpha$-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69: 2820-2825. https://doi.org/10.1016/j.phytochem.2008.09.007
  27. Lee SH, Li Y, Karadeniz F, Kim MM, Kim SK. 2009. $\alpha$-Glucosidase and $\alpha$-amylase inhibitory activities of phloroglucinol derivatives from edible marine brown alga, Ecklonia cava. J Sci Food Agric 89: 1552-1558. https://doi.org/10.1002/jsfa.3623
  28. Abrahamson MJ. 2004. Optimal glycemic control in type 2 diabetes mellitus: fasting and postprandial glucose in context. Arch Intern Med 164: 486-491. https://doi.org/10.1001/archinte.164.5.486
  29. Haller H. 1998. The clinical importance of postprandial glucose. Diabetes Res Clin Pract 40: S43-49. https://doi.org/10.1016/S0168-8227(98)00042-4
  30. Inoue I, Takahashi K, Noji S, Awata T, Negishi K, Katayama S. 1997. Acarbose controls postprandial hyper-proinsulinemia in non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 36: 143-151. https://doi.org/10.1016/S0168-8227(97)00045-4
  31. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD. 2009. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360: 129-139. https://doi.org/10.1056/NEJMoa0808431
  32. Stettler C, Allemann S, Jü ni P, Cull CA, Holman RR, Egger M, Krähenbühl S, Diem P. 2006. Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: meta-analysis of randomized trials. Am Heart J 152: 27-38. https://doi.org/10.1016/j.ahj.2005.09.015
  33. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 2008. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359: 1577-1589. https://doi.org/10.1056/NEJMoa0806470
  34. Nam JS, Lee WJ, Yoon IS, Kang MW, Jang HS, Youn JH, Kim BR, Kong HJ, Kim KH, Kim YH, Lee DS, Choi HJ. 2007. Effect of a brown algae extract on postprandial glucose control in neonatal diabetic and obese rats. J FASEB 21: 845.2.

Cited by

  1. Phlorotannins: Towards New Pharmacological Interventions for Diabetes Mellitus Type 2 vol.22, pp.1, 2017, https://doi.org/10.3390/molecules22010056
  2. Anti-diabetic potential of selected Malaysian seaweeds vol.27, pp.5, 2015, https://doi.org/10.1007/s10811-014-0462-8
  3. Potential Bioactive Compounds from Seaweed for Diabetes Management vol.13, pp.8, 2015, https://doi.org/10.3390/md13085447
  4. Bioactive compounds from marine macroalgae and their hypoglycemic benefits vol.72, pp.None, 2018, https://doi.org/10.1016/j.tifs.2017.12.001
  5. Pharmacological and natural products diversity of the brown algae genus Sargassum vol.10, pp.42, 2012, https://doi.org/10.1039/d0ra03576a
  6. In vitro potential activity of some seaweeds as antioxidants and inhibitors of diabetic enzymes vol.40, pp.3, 2012, https://doi.org/10.1590/fst.15619
  7. Caulerpa lentillifera Polysaccharides-Rich Extract Reduces Oxidative Stress and Proinflammatory Cytokines Levels Associated with Male Reproductive Functions in Diabetic Mice vol.10, pp.24, 2012, https://doi.org/10.3390/app10248768
  8. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? vol.19, pp.9, 2012, https://doi.org/10.3390/md19090484
  9. Aquatic Phlorotannins and Human Health: Bioavailability, Toxicity, and Future Prospects vol.16, pp.12, 2012, https://doi.org/10.1177/1934578x211056144