DOI QR코드

DOI QR Code

Fabrication of ZnO Rod by Electrodeposition and Its Application to Dye Sensitized Solar Cell

전기증착법을 이용한 ZnO 막대구조의 형성 및 염료감응형 태양전지에의 응용

  • Kim, Hyeyoung (Department of Chemical Engineering, Inha University) ;
  • Jo, Yunkyoung (Department of Chemical Engineering, Inha University) ;
  • Lee, Kiyoung (Department of Chemical Engineering, Inha University) ;
  • Lee, Inhae (Department of Chemical Engineering, Inha University) ;
  • Tak, Yongsug (Department of Chemical Engineering, Inha University)
  • Received : 2011.05.02
  • Accepted : 2011.07.31
  • Published : 2012.02.01

Abstract

High density of ZnO nanorods were fabricated by electrochemical deposition and subsequent heat treatment. Formation of $Zn(OH)_2$ and ZnO during electrodeposition indicated that the electrodeposition efficiency of ZnO was below 33%. ZnO rod has a preferential (200) growth plane after heat treatment at $500^{\circ}C$ and the growth rate of ZnO rod was measured to be 0.986 ${\mu}m/hr$. Dye sensitized solar cell(DSC) showed the efficiency of 0.21% when electrochemically prepared ZnO rod was used as an electrode. It suggests the possible application of ZnO rod structure in the DSC.

본 연구에서는 전해증착법과 열처리를 통하여 ITO 투명전극 위에 고밀도의 ZnO 막대구조를 형성하는 방법을 조사하였다. 증착과정에서 $Zn(OH)_2$와 ZnO가 함께 형성되는 것을 고려할 때 전기화학적 ZnO 증착효율은 33% 이하를 나타내었다. $500^{\circ}C$ 열처리 후 ZnO는 (002)를 선택적으로 갖는 결정구조를 형성하며, 나노막대 구조의 성장속도는 0.986 ${\mu}m/hr$로 측정되었다. 그리고 전기화학적으로 제조한 ZnO 막대를 염료감응 태양전지의 전극으로 사용시 측정된 전지효율은 0.21%로서 태양전지용 전극으로서의 가능성을 확인하였다.

Keywords

Acknowledgement

Supported by : 인하대학교

References

  1. Goldberger, J., Sirbuly, D. J., Law, M. and Yang, P., "ZnO Nanowire Transistors", J. Phys. Chem. B, 109(1), 9-14(2005).
  2. Saito, N., Haneda, H., Sekiguchi, T., Ohashi, N., Sakaguchi, I. and Koumoto, K., "Low-Temperature Fabrication of Light-Emitting Zinc Oxide Micropatterns Using Self-Assembled Monolayers", Adv. Mater., 14(6), 418-421(2002). https://doi.org/10.1002/1521-4095(20020318)14:6<418::AID-ADMA418>3.0.CO;2-K
  3. Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P. and Lin, C. L., "Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors," Appl. Phys. Lett., 84(18), 3654-3656(2004). https://doi.org/10.1063/1.1738932
  4. Law, M., Sirbuly, D. J., Johnson, J. C., Goldberger, J., Saykally, R. J. and Yang, P., "Nanoribbon Waveguides for Subwavelength Photonics Integration," Science, 305(5688), 1269-1273(2004). https://doi.org/10.1126/science.1100999
  5. Keis, K., Magnusson, E., Lindstorm, H., Lindquist, S. E. and Hagfelt, A., "A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes", Sol. Energy Mater. Sol. Cells, 73(1), 51-58(2002). https://doi.org/10.1016/S0927-0248(01)00110-6
  6. Duan, X. and Lieber, C. M., "General Synthesis of Compound Semiconductor Nanowires, " Adv. Mater., 12(4), 298-302(2000). https://doi.org/10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
  7. Li, S. Y., Lin, P., Lee, C. Y. and Tseng, T. Y., "Field Emission and Photofluorescent Characteristics of Zinc Oxide Nanowires Synthesized by a Metal Catalyzed Vapor-liquid-solid Process", J. Appl. Phys., 95(7), 3711-3716(2004). https://doi.org/10.1063/1.1655685
  8. Sen, S., Leary, D. J. and Bauer, C. L., "Characterization of r.f.- Sputtered ZnO Thin Films by X-ray Diffraction and Scanning Electron Microscopy", Thin Solid Films, 94(1), 7-14(1982). https://doi.org/10.1016/0040-6090(82)90024-4
  9. Haase, M., Weller, H. and Henglein, A., "Photochemistry and Radiation Chemistry of Colloidal Semiconductors. 23. Electron Storage on Zinc Oxide Particles and Size Quantization," J. Phys. Chem., 92(2), 482-487(1998).
  10. Park, W. I., Kim, D. H., Jung, S. W. and Yi, G. C., "Metalorganic Vapor-phase Epitaxial Growth of Vertically Well-aligned ZnO Nanorods", Appl. Phys. Lett., 80(22), 4232-4234(2002). https://doi.org/10.1063/1.1482800
  11. Roy, V. A. L., Djurisic, A. B., Chan, W. K., Gao, J., Lui, H. G. and Surya, C., "Luminescent and Structural Properties of ZnO Nanorods Prepared Under Different Conditions", Appl. Phys. Lett., 83(1), 141-143(2003). https://doi.org/10.1063/1.1589184
  12. Izaki, M. and Omi, T., "Transparent Zinc Oxide Films Prepared by Electrochemical Reaction, " Appl. Phys. Lett., 68(17), 2439-2440 (1996). https://doi.org/10.1063/1.116160
  13. Donderis, V., Hernandez-Fenollosa, M. A., Damonte, L. C., Mari, B. and Cembrero, J., "Enhancement of Surface Morphology and Optical Properties of Nanocolumnar ZnO Films," Superlattices Microstruct., 42(1-6), 461-467(2007). https://doi.org/10.1016/j.spmi.2007.04.068
  14. Vayssieres, L., Keis, K., Lindquist, S. E. and Hegfeld, A., "Purpose- Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO," J. Phys. Chem. B, 105(17), 3350-3352(2001). https://doi.org/10.1021/jp010026s
  15. Vayssieres, L., "Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions", Adv. Mater., 15(5), 464-466(2003). https://doi.org/10.1002/adma.200390108
  16. Yadav, H. K., Sreenivas, K., Gupta, V., Singh, S. P. and Katiyar, R. S., "Effect of Surface Defects on the Visible Emission from ZnO Nanoparticles", J. Mater. Res., 22(9), 2404-2409(2007). https://doi.org/10.1557/jmr.2007.0321
  17. Pauporte, T. and Lincot, D., "Hydrogen Peroxide Oxygen Precursor for Zinc Oxide Electrodeposition," J. Electrochem. Soc., 148(4), C310-C314(2001). https://doi.org/10.1149/1.1357175
  18. Fujimura, N., Nishihara, T., Goto, S. and Ito, T., "Heteroepitaxy of Zinc Oxide Thin Films, Considering Non-epitaxial Preferential Orientation", J. Cryst. Growth, 115(1-4), 816-820(1991). https://doi.org/10.1016/0022-0248(91)90852-V

Cited by

  1. Crystalline Nano-sol Blocking Interlayer vol.51, pp.6, 2013, https://doi.org/10.9713/kcer.2013.51.6.774
  2. Synthesis of Highly Concentrated ZnO Nanorod Sol by Sol-gel Method and their Applications for Inverted Organic Solar Cells vol.53, pp.3, 2015, https://doi.org/10.9713/kcer.2015.53.3.350