DOI QR코드

DOI QR Code

모폴린계 이온성 액체의 열 및 전기화학적 안정성

Thermal and Electrochemical Stability of Morpholinium Ionic Liquids

  • 김현택 (한국교통대학교 화공생물공학과) ;
  • 홍연기 (한국교통대학교 화공생물공학과) ;
  • 강정원 (한국교통대학교 컴퓨터공학과) ;
  • 이영우 (한국교통대학교 화공생물공학과) ;
  • 김기섭 (한국교통대학교 화공생물공학과)
  • Kim, Hyun-Taek (Chemical and Biological Engineering, Korea National University of Transportation) ;
  • Hong, Yeon Ki (Chemical and Biological Engineering, Korea National University of Transportation) ;
  • Kang, Jeong Won (Computer Engineering, Korea National University of Transportation) ;
  • Lee, Young-Woo (Chemical and Biological Engineering, Korea National University of Transportation) ;
  • Kim, Ki-Sub (Chemical and Biological Engineering, Korea National University of Transportation)
  • 투고 : 2012.03.12
  • 심사 : 2012.04.15
  • 발행 : 2012.08.01

초록

지난 수십 년간 다양한 산업에서 사용된 유독 화학물질은 심각한 환경오염을 초래했다. 그리고 이산화탄소나 메탄가스 같은 부산물로 인해 지구 온난화를 가속화 시켰다. 그래서 현재 사용하고 있는 유기 용매를 대체할 새로운 환경친화적인 소재 개발의 중요성이 부각되고 있다. 이온성 액체는 비휘발성, 비가연성, 화학적 불활성과 같은 친환경적인 물성을 지니고 있다. 이 밖에도 넓은 전기화학적 범위, 높은 전기전도도, 넓은 열적 작용 범위 그리고 유기용매와의 높은 용해성과 같은 물성을 지니고 있어 합성용매, 촉매제, 가스추출제로서 각광받고 있는 물질이다. 이번 연구에서는 모폴린 계열의 이온성 액체인 N-ethyl-N-methylmorpholine Bromide, N-butyl-N-methylmorpholine Bromide, N-octyl-N-methylmorpholine Bromide, N-ethyl-N-methylmorpholine Tetrafluoroborate, N-butyl-N-methylmorpholine Tetrafluoroborate, N-octyl-N-methylmorpholine Tetrafluoroborate, N-ethyl-N-methylmorpholine Hexafluorophosphate, N-butyl-N-methylmorpholine Hexafluorophosphate, N-octyl-N-methylmorpholine Hexafluorophosphate를 합성하였다. 합성물의 녹는점, 분해 온도, 전기화학적 안전성은 각각 DSC, TGA, CV로 측정하였다. 할로겐 음이온($Br^-$)을 지닌 이온성 액체는 대체로 높은 온도($150{\sim}200^{\circ}C$)에서 녹는점 갖고, 비교적 낮은 열분해 온도($200{\sim}230^{\circ}C$), 좁은 전기화학적 안전성(3.4~3.6 V)을 보였다. 반면에 무기 음이온($BF_4^-$, $PF_6^-$)을 지닌 이온성 액체들은 비교적 낮은 온도($50{\sim}110^{\circ}C$)에서 녹는점을 가졌고, 높은 열분해 온도($250{\sim}380^{\circ}C$), 넓은 영역에 걸친 전기화학적 안전성(6.1~6.3 V)을 보였다. 뿐만 아니라 동일한 음이온에서도 양이온의 탄소 사슬의 길이에 따라 물성이 상이함을 확인할 수 있었다. 이번 연구를 통해 얻은 자료들은 이온성 액체의 상용화에 밑거름이 될 것이다.

During the last few decades, toxic chemicals used in various industries have caused global pollution and the side products such as carbon dioxide and methane gas have contributed to global warming. Thus, it is desirable to develop new alternative solvents. It is well known that ionic liquids display a variety of environmentally friendly physical properties: nonvolatile, nonflammable, wide electrochemical windows, high inherent conductivities, wide thermal operating ranges, chemically inert, and limited miscibilities with organic solvents. Because of these characteristics, ionic liquids are promising candidates as solvents for synthetic chemistries, catalysis, and gas separations. In this study, we synthesized morpholiunium salts as N-ethyl-N-methylmorpholine Bromide, N-butyl-N-methylmorpholine Bromide, N-octyl-N-methylmorpholine Bromide, N-ethyl-N-methylmorpholine Tetrafluoroborate, N-butyl-N-methylmorpholine Tetrafluoroborate, N-octyl-N-methylmorpholine Tetrafluoroborate, N-ethyl-N-methylmorpholine Hexafluorophosphate, N-butyl-N-methylmorpholine Hexafluorophosphate, and N-octyl-N-methylmorpholine Hexafluorophosphate. The melting points, decomposition temperatures and electrochemical stabilities of the salts were measured by DSC, TGA, and CV, respectively. The salts with halide anion showed high melting points ($150{\sim}200^{\circ}C$), low decomposition temperatures ($200{\sim}230^{\circ}C$), narrow electrochemical stabilities (3.4~3.6 V). The synthesized salts with inorganic anions, on the other hand, presented low melting point ($50{\sim}110^{\circ}C$), high decomposition temperatures ($250{\sim}380^{\circ}C$), wide electrochemical stabilities (6.1~6.3 V). We also found that the properties depend on the length of the carbon chain.

키워드

과제정보

연구 과제 주관 기관 : 한국교통대학교

참고문헌

  1. Martyn, J. E. and Kenneth, R. S., "Ionic Liwuids. Green Solvents for the Future," Pure Appl. Chem., 72(7), 1391-1398(2000). https://doi.org/10.1351/pac200072071391
  2. Ngo, H. L., Lecompte, K., Hargens, L. and McEwen, A. B., "Thermal Properties of Imidazolium Ionic Liquids," Thermochim. Acta, 357-358, 97-102(2000). https://doi.org/10.1016/S0040-6031(00)00373-7
  3. Welton, T., "Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis," Chem. Rev., 99, 2071(1999). https://doi.org/10.1021/cr980032t
  4. Marsh, K. N., Deev, A., Wu, A. C.-T., Tran, E. and Klamt, A., "Room Temperature Ionic Liquids as Replacements for Conventional Solvents - A Review," Korean J. Chem. Eng., 19(3), 357 (2002). https://doi.org/10.1007/BF02697140
  5. Lee, H. J., Lee, J. S., Ahn, B. S. and Kim, H. S., "Technology Trend in Ionic Liquids," J. Korean Ind. Eng. Chem., 16(5), 595-602(2005).
  6. Lee, H. J., Lee, J. S. and Kim, H. S., "Applications of Ionic Liquids: The State of Arts," Appl. Chem. Eng., 21(2), 129-136(2010).
  7. Jang, W. J., "A Study of Absorbent for Pre-Combustion $CO_2$ Capture System," Chung nam National University(2009).
  8. Yinzhe, J., Jinzhu, Z., Yulia, P., Koo, Y. M. and Row, K. H., "Influence of Ionic Liquid for Separation of D-tryptophan and H-CBZ-D-phenylalanine," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 44(5), 453-459(2006).
  9. Yoshizawa, M., Ogihara, W. and Ohno, H., "Novel Polymer Electrolytes Prepared by Copolymerization of Ionic Liquid Monomers," Polym. Adv. Technol., 13(8), 589(2002). https://doi.org/10.1002/pat.261
  10. Bonhote, P., Dias, A. P., Papageorgiou, N., Kalyanasundaram, K. and Gratzel, M., "Hydrophobic, Highly Conductive Ambient-temperature Molten Salts," Inorg. Chem., 35, 1168(1996). https://doi.org/10.1021/ic951325x
  11. Hagiwara, R., Matsumoto, K., Nakamori, Y, Tsuda, T., Ito, Y., Matsumoto, H. and Momota, K., "Physicochemical Properties of 1,3-dialkylimidazolium Fluorohydrogenate Room-temperature Molten Salts," J. Electrochem. Soc., 150(12), D195(2003). https://doi.org/10.1149/1.1621414
  12. Hagiwara, R. and Ito, Y., "Room Temperature Ionic Liquids of Alkylimidazolium Cations and Fluoroanions," J. Flouorine Chem., 105(2), 221(2000). https://doi.org/10.1016/S0022-1139(99)00267-5

피인용 문헌

  1. Extraction Equilibrium of Acrylic Acid by Aqueous Two-Phase Systems Using Hydrophilic Ionic Liquids vol.52, pp.5, 2014, https://doi.org/10.9713/kcer.2014.52.5.627