DOI QR코드

DOI QR Code

Inhibition of TNF-α-mediated NF-κB Transcriptional Activity in HepG2 Cells by Dammarane-type Saponins from Panax ginseng Leaves

  • Received : 2011.12.14
  • Accepted : 2012.03.12
  • Published : 2012.04.15

Abstract

Panax ginseng (PG) is a globally utilized medicinal herb. The medicinal effects of PG are primarily attributable to ginsenosides located in the root and leaf. The leaves of PG are known to be rich in various bioactive ginsenosides, and the therapeutic effects of ginseng extract and ginsenosides have been associated with immunomodulatory and anti-inflammatory activities. We examined the effect of PG leaf extract and the isolated ginsenosides, on nuclear factor (NF)-${\kappa}B$transcriptional activity and target gene expression by applying a luciferase assay and reverse transcription polymerase chain reaction in tumor necrosis factor (TNF)-${\alpha}$-treated hepatocarcinoma HepG2 cells. Air-dried PG leaf extract inhibited TNF-${\alpha}$-induced NF-${\kappa}B$transcription activity and NF-${\kappa}B$-dependent cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) gene expression more efficiently than the steamed extract. Of the 10 ginsenosides isolated from PG leaves, Rd and Km most significantly inhibited activity in a dose-dependent manner, with $IC_{50}$ values of $12.05{\pm}0.82$ and $8.84{\pm}0.99\;{\mu}M$, respectively. Furthermore, the ginsenosides Rd and Km inhibited the TNF-${\alpha}$-induced expression levels of the COX-2 and iNOS gene in HepG2 cells. Air-dried leaf extracts and their chemical components, ginsenoside Rd and Km, are involved in the suppression of TNF-${\alpha}$-induced NF-${\kappa}B$ activation and NF-${\kappa}B$-dependent iNOS and COX-2 gene expression. Consequently, air-dried leaf extract from PG, and the purified ginsenosides, have therapeutic potential as anti-inflammatory.

Keywords

References

  1. Berasain C, Castillo J, Perugorria MJ, Latasa MU, Prieto J, Avila MA. Infl ammation and liver cancer: new molecular links. Ann N Y Acad Sci 2009;1155:206-221. https://doi.org/10.1111/j.1749-6632.2009.03704.x
  2. Kawanishi S, Hiraku Y, Pinlaor S, Ma N. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem 2006;387:365-372. https://doi.org/10.1515/BC.2006.049
  3. Yamashita T, Kaneko S. Molecular pathogenesis of hepatocellular carcinoma. Gan To Kagaku Ryoho 2010;37:14-17.
  4. Elsharkawy AM, Mann DA. Nuclear factor-kappaB and the hepatic infl ammation-fi brosis-cancer axis. Hepatology 2007;46:590-597. https://doi.org/10.1002/hep.21802
  5. Farinati F, Piciocchi M, Lavezzo E, Bortolami M, Cardin R. Oxidative stress and inducible nitric oxide synthase induction in carcinogenesis. Dig Dis 2010;28:579-584. https://doi.org/10.1159/000320052
  6. Holt AP, Salmon M, Buckley CD, Adams DH. Immune interactions in hepatic fibrosis. Clin Liver Dis 2008;12:861-882. https://doi.org/10.1016/j.cld.2008.07.002
  7. Lentsch AB, Ward PA. The NFkappaBb/IkappaB system in acute infl ammation. Arch Immunol Ther Exp (Warsz) 2000;48:59-63.
  8. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 2001;480-481:243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
  9. Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN. Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 2006;38:1654-1661. https://doi.org/10.1016/j.biocel.2006.03.021
  10. Luqman S, Pezzuto JM. NFkappaB: a promising target for natural products in cancer chemoprevention. Phytother Res 2010;24:949-963.
  11. Nam NH. Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 2006;6:945-951. https://doi.org/10.2174/138955706777934937
  12. Ernst E. Panax ginseng: an overview of the clinical evidence. J Ginseng Res 2010;34:259-263. https://doi.org/10.5142/jgr.2010.34.4.259
  13. Hofseth LJ, Wargovich MJ. Inflammation, cancer, and targets of ginseng. J Nutr 2007;137(1 Suppl):183S-185S. https://doi.org/10.1093/jn/137.1.183S
  14. Vuksan V, Sievenpipper J, Jovanovski E, Jenkins AL. Current clinical evidence for Korean red ginseng in management of diabetes and vascular disease: a Toronto's ginseng clinical testing program. J Ginseng Res 2010;34:264-273. https://doi.org/10.5142/jgr.2010.34.4.264
  15. Liu GY, Li XW, Wang NB, Zhou HY, Wei W, Gui MY, Yang B, Jin YR. Three new dammarane-type triterpene saponins from the leaves of Panax ginseng C.A. Meyer. J Asian Nat Prod Res 2010;12:865-873. https://doi.org/10.1080/10286020.2010.508035
  16. Tung NH, Song GY, Park YJ, Kim YH. Two new dammarane-type saponins from the leaves of Panax ginseng. Chem Pharm Bull (Tokyo) 2009;57:1412-1414. https://doi.org/10.1248/cpb.57.1412
  17. Tung NH, Song GY, Minh CV, Kiem PV, Jin LG, Boo HJ, Kang HK, Kim YH. Steamed ginseng-leaf components enhance cytotoxic effects on human leukemia HL-60 cells. Chem Pharm Bull (Tokyo) 2010;58:1111-1115. https://doi.org/10.1248/cpb.58.1111
  18. Christensen LP. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2009;55:1-99.
  19. Wang H, Peng D, Xie J. Ginseng leaf-stem: bioactive constituents and pharmacological functions. Chin Med 2009;4:20. https://doi.org/10.1186/1749-8546-4-20
  20. Baek NI, Kim DS, Lee YH, Park JD, Lee CB, Kim SI. Ginsenoside $Rh_4$, a genuine dammarane glycoside from Korean red ginseng. Planta Med 1996;62:86-87. https://doi.org/10.1055/s-2006-957816
  21. Kim KK, Park KS, Song SB, Kim KE. Up regulation of GW112 Gene by NF kappaB promotes an antiapoptotic property in gastric cancer cells. Mol Carcinog 2010;49:259-270. https://doi.org/10.1002/mc.20596
  22. Ye R, Yang Q, Kong X, Han J, Zhang X, Zhang Y, Li P, Liu J, Shi M, Xiong L, Zhao G. Ginsenoside Rd attenuates early oxidative damage and sequential infl ammatory response after transient focal ischemia in rats. Neurochem Int 2011;58:391-398. https://doi.org/10.1016/j.neuint.2010.12.015
  23. Lee DC, Lau AS. Effects of Panax ginseng on tumor necrosis factor-$\alpha$-mediated infl ammation: a mini-review. Molecules 2011;16:2802-2816. https://doi.org/10.3390/molecules16042802
  24. Chang SH, Choi Y, Park JA, Jung DS, Shin J, Yang JH, Ko SY, Kim SW, Kim JK. Anti-infl ammatory effects of BT-201, an n-butanol extract of Panax notoginseng, observed in vitro and in a collagen-induced arthritis model. Clin Nutr 2007;26:785-791. https://doi.org/10.1016/j.clnu.2007.07.008
  25. Son HY, Han HS, Jung HW, Park YK. Panax notoginseng attenuates the infarct volume in rat ischemic brain and the infl ammatory response of microglia. J Pharmacol Sci 2009;109:368-379. https://doi.org/10.1254/jphs.08197FP
  26. Ahn JY, Choi IS, Shim JY, Yun EK, Yun YS, Jeong G, Song JY. The immunomodulator ginsan induces resistance to experimental sepsis by inhibiting Toll-like receptor-mediated infl ammatory signals. Eur J Immunol 2006;36:37-45. https://doi.org/10.1002/eji.200535138
  27. Ahn JY, Song JY, Yun YS, Jeong G, Choi IS. Protection of Staphylococcus aureus-infected septic mice by suppression of early acute infl ammation and enhanced antimicrobial activity by ginsan. FEMS Immunol Med Microbiol 2006;46:187-197. https://doi.org/10.1111/j.1574-695X.2005.00021.x
  28. Chai H, Wang Q, Huang L, Xie T, Fu Y. Ginsenoside $Rb_1$ inhibits tumor necrosis factor-alpha-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Biol Pharm Bull 2008;31:2050-2056. https://doi.org/10.1248/bpb.31.2050
  29. Hien TT, Kim ND, Kim HS, Kang KW. Ginsenoside $Rg_3$ inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules in human endothelial cells. Pharmazie 2010;65:699-701.
  30. Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X. Differential effects of ginsenosides on NO and TNF-alpha production by LPS-activated N9 microglia. Int Immunopharmacol 2007;7:313-320. https://doi.org/10.1016/j.intimp.2006.04.021
  31. Nguyen MD, Kasai R, Ohtani K, Ito A, Nguyen TN, Yamasaki K, Tanaka O. Saponins from Vietnamese ginseng, Panax vietnamensis HA et Grushv. Collected in central Vietnam. II. Chem Pharm Bull (Tokyo) 1994;42:115-122. https://doi.org/10.1248/cpb.42.115
  32. Lee EH, Cho SY, Kim SJ, Shin ES, Chang HK, Kim DH, Yeom MH, Woe KS, Lee J, Sim YC et al. Ginsenoside F1 protects human HaCaT keratinocytes from ultraviolet-Binduced apoptosis by maintaining constant levels of Bcl-2. J Invest Dermatol 2003;121:607-613. https://doi.org/10.1046/j.1523-1747.2003.12425.x

Cited by

  1. Pharmacological Effects of Ginseng on Liver Functions and Diseases: A Minireview vol.2012, pp.1741-4288, 2012, https://doi.org/10.1155/2012/173297
  2. B/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton vol.2014, pp.1466-1861, 2014, https://doi.org/10.1155/2014/354843
  3. B-Dependent Manner vol.2014, pp.1466-1861, 2014, https://doi.org/10.1155/2014/658351
  4. Inhibition of TNF-α-Mediated NF-κB Transcriptional Activity by Dammarane-Type Ginsenosides from Steamed Flower Buds of Panax ginseng in HepG2 and SK-Hep1 Cells vol.22, pp.1, 2014, https://doi.org/10.4062/biomolther.2013.096
  5. : Inhibition of TNF-α-induced NF-κB, COX-2, and iNOS transcriptional expression vol.28, pp.12, 2014, https://doi.org/10.1002/ptr.5203
  6. Decreased Eccentric Exercise-Induced Macrophage Infiltration in Skeletal Muscle after Supplementation with a Class of Ginseng-Derived Steroids vol.9, pp.12, 2014, https://doi.org/10.1371/journal.pone.0114649
  7. Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity vol.19, pp.5, 2015, https://doi.org/10.4196/kjpp.2015.19.5.441
  8. B-Mediated Inflammatory Response vol.2015, pp.1466-1861, 2015, https://doi.org/10.1155/2015/143025
  9. Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk vol.23, pp.5, 2015, https://doi.org/10.4062/biomolther.2015.036
  10. )-3-(3-methoxyphenyl)-1-(2-pyrrolyl)-2-propenone displays suppression of inflammatory responses via inhibition of Src, Syk, and NF-κB vol.20, pp.1, 2016, https://doi.org/10.4196/kjpp.2016.20.1.91
  11. 1-(2,3-Dibenzimidazol-2-ylpropyl)-2-methoxybenzene Is a Syk Inhibitor with Anti-Inflammatory Properties vol.21, pp.4, 2016, https://doi.org/10.3390/molecules21040508
  12. Optimal management for alcoholic liver disease: Conventional medications, natural therapy or combination? vol.22, pp.1, 2016, https://doi.org/10.3748/wjg.v22.i1.8
  13. Anticancer effect of 20(S)-ginsenoside Rh2 on HepG2 liver carcinoma cells: Activating GSK-3β and degrading β-catenin vol.36, pp.4, 2016, https://doi.org/10.3892/or.2016.5033
  14. Profiling of ginsenosides in the two medicinal Panax herbs based on ultra-performance liquid chromatography-electrospray ionization–mass spectrometry vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-3427-3
  15. Syk Plays a Critical Role in the Expression and Activation of IRAK1 in LPS-Treated Macrophages vol.2017, pp.1466-1861, 2017, https://doi.org/10.1155/2017/1506248
  16. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities vol.17, pp.4, 2016, https://doi.org/10.3390/ijms17040465
  17. Ginsenoside Rg3 Inhibition of Thyroid Cancer Metastasis Is Associated with Alternation of Actin Skeleton vol.21, pp.9, 2018, https://doi.org/10.1089/jmf.2017.4144
  18. Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-κB in LPS-stimulated RAW264.7 cells and mouse liver vol.37, pp.1, 2012, https://doi.org/10.5142/jgr.2013.37.54
  19. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system vol.37, pp.1, 2012, https://doi.org/10.5142/jgr.2013.37.8
  20. Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach vol.37, pp.3, 2012, https://doi.org/10.5142/jgr.2013.37.283
  21. Chemical Composition, and Cytotoxic, Antioxidant and Antibacterial Activities of the Essential Oil from Ginseng Leaves vol.9, pp.6, 2012, https://doi.org/10.1177/1934578x1400900637
  22. The Dietary Flavonoid Kaempferol Mediates Anti-Inflammatory Responses via the Src, Syk, IRAK1, and IRAK4 Molecular Targets vol.2015, pp.None, 2012, https://doi.org/10.1155/2015/904142
  23. ATP-Binding Pocket-Targeted Suppression of Src and Syk by Luteolin Contributes to Its Anti-Inflammatory Action vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/967053
  24. ᴅ-galactosamine/lipopolysaccharide로 감작된 급성간독성 마우스 모델에서 인삼열매추출물의 간독성 개선 효과 vol.49, pp.6, 2012, https://doi.org/10.9721/kjfst.2017.49.6.676
  25. Ginseng attenuates fipronil-induced hepatorenal toxicity via its antioxidant, anti-apoptotic, and anti-inflammatory activities in rats vol.27, pp.36, 2012, https://doi.org/10.1007/s11356-020-10306-0
  26. Vina-Ginsenoside R4 from Panax ginseng Leaves Alleviates 6-OHDA-Induced Neurotoxicity in PC12 Cells Via the PI3K/Akt/GSK-3β Signaling Pathway vol.68, pp.51, 2012, https://doi.org/10.1021/acs.jafc.0c06474
  27. 4-(Phenylsulfanyl) Butan-2-One Attenuates the Inflammatory Response Induced by Amyloid-β Oligomers in Retinal Pigment Epithelium Cells vol.19, pp.1, 2021, https://doi.org/10.3390/md19010001
  28. The 4-(Phenylsulfanyl) butan-2-one Improves Impaired Fear Memory Retrieval and Reduces Excessive Inflammatory Response in Triple Transgenic Alzheimer's Disease Mice vol.13, pp.None, 2012, https://doi.org/10.3389/fnagi.2021.615079
  29. Methyl Palmitate—A suitable adjuvant for Sorafenib therapy to reduce in vivo toxicity and to enhance anti‐cancer effects on hepatocellular carcinoma cells vol.128, pp.3, 2012, https://doi.org/10.1111/bcpt.13525