DOI QR코드

DOI QR Code

Evaluation of Physicochemical Properties and Biological Activities of Steamed and Fermented Deodeok (Codonopsis lanceolata)

증숙 및 발효 더덕의 이화학적 특성 및 생리활성 변화

  • Jung, Lae-Seung (Department of Biomaterials Engineering, Kangwon National University) ;
  • Yoon, Won-Byung (Department of Food Biotechnology, Kangwon National University) ;
  • Park, Sung-Jin (Department of Tourism Food Service Cuisine, Hallym College) ;
  • Park, Dong-Sik (Division of Functional Food and Nutrition, Rural Development Administration) ;
  • Ahn, Ju-Hee (Department of Biomaterials Engineering, Kangwon National University)
  • 정래승 (강원대학교 생물소재공학과) ;
  • 윤원병 (강원대학교 식품생명공학과) ;
  • 박성진 (한림성심대학교 관광외식조리과) ;
  • 박동식 (농촌진흥청 기능성식품과) ;
  • 안주희 (강원대학교 생물소재공학과)
  • Received : 2011.10.18
  • Accepted : 2011.12.16
  • Published : 2012.02.29

Abstract

This study was designed to evaluate the physicochemical properties and biological activities of steamed and fermented Codonopsis lanceolata. The treatments included NS-NF (non-steamed and non-fermented), NS-LF (non-steamed and L. rhamnosus fermented), S-NF (steamed and non-fermented), and S-LF (steamed and L. rhamnosus fermented). Total polyphenol amounts of S-NF and S-LF were significantly increased to more than 26 mg GAE/g. The highest DPPH scavenging activities were observed for S-NF and S-LF, showing $EC_{50}$ values of 0.8 and 0.6 mg/mL, respectively. The growths of Staphylococcus aureus, Listeria monocytogenes, Salmonella Typhimurium, and Shigella boydii were effectively inhibited by S-LF (MIC < 9 mg/mL). The NS-LF and S-LF ($EC_{50}$ <6 mg/mL) effectively inhibited ${\alpha}$-Glucosidase and tyrosinase activities compared to NS-NF ($EC_{50}$ <17 mg/mL). The S-LF exhibited the highest acetylcholinesterase (AChE) inhibitory activity ($IC_{50}$ <32 mg/mL). Therefore, the results suggest that the application of the steaming process combined with probiotic fermentation can effectively enhance the biological and pharmacological activities in C. lanceolata.

본 연구에서는 증숙 및 발효에 의한 더덕(Codonopsis lanceolata)의 이화학적 특성과 생리활성의 변화에 미치는 영향에 대해 조사하였다. 건조된 더덕 시료를 증숙처리한 후 Lactobacillus rhamnosus를 접종하여 $37^{\circ}C$에서 7일간 혐기적 조건에서 발효시켰다. 비증숙과 비발효 더덕추출물(NS-NF)을 대조군으로 하여 처리군에는 비증숙과 발효 더덕추출물(NS-LF), 증숙과 비발효 더덕 추출물(S-NF), 증숙과 발효 더덕추출물(S-LF)을 포함한다. 총 폴 리페놀성 화합물 함량은 NS-NF(8.9 mg GAE/g)와 비교하여 S-NF와 S-LF에서 유의적으로 증가되었다(26 mg GAE/g). 총 플라보노이드 함량은 S-NF(8.1 mg RE/mL)와 S-LF(7.8 mg RE/mL)에서 가장 높았다. S-NF와 S-LF의 $EC_{50}$ 값이 각각 0.8과 0.6 mg/mL으로 높은 항산화능을 보였다. Staphylococcus aureus, Listeria monocytogenes, Salmonella Typhimurium, Shigella boydii의 생육은 S-LF에 의해 효과적으로 저해되었다(MIC<9 mg/mL). NS-NF($EC_{50}$ <17 mg/mL)에 비교하여 NS-LF와 S-LF($EC_{50}$ <6 mg/mL)가 가장 높은 ${\alpha}$-glucosidase와 tyrosinase 저해효과를 나타냈다. Aacetylcholinesterase(AChE)는 S-LF($EC_{50}$ <32 mg/mL)에 의해 효과적으로 저해되었다. 따라서 본 연구의 결과는 증숙에 의해 더덕의 총 페놀 함량, 플라보노이드 함량, 항산화능이 향상되었으며 발효에 의해 특이적으로 항미생물 효과, 효소활성저해 및 인지기능 개선 등과 같은 생리활성을 효과적으로 증진시켰다.

Keywords

References

  1. Yongxu S, Jicheng L. Structural characterization of a water-solu- ble polysaccharide from the Roots of Codonopsis pilosula and its immunity activity.Int. J. Biol. Macromol. 43: 279-282 (2008) https://doi.org/10.1016/j.ijbiomac.2008.06.009
  2. Byeon S, Choi W, Hong E, Lee J, Rhee M, Park HJ, Cho J. Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses. Arch. Pharm. Res. 32: 813-822 (2009) https://doi.org/10.1007/s12272-009-1601-7
  3. Maeng YS, Park HK. Antioxidant activity of ethanol extract from deodeok (Codonopsis lanceolata). Korean J. Food Sci. Technol. 23: 311-316 (1991)
  4. Ichikawa M, Ohta S, Komoto N, Ushijima M, Kodera Y, Hayama M, Shirota O, Sekita S, Kuroyanagi M. Simultaneous determination of seven saponins in the roots of Codonopsis lanceolata by liquid chromatography-mass spectrometry. J. Nat. Med. 63: 52-57 (2009) https://doi.org/10.1007/s11418-008-0294-4
  5. Ushijima M, Komoto N, Sugizono Y, Mizuno I, Sumihiro M, Ichikawa M, Hayama M, Kawahara N, Nakane T, Shirota O, Sekita S, Kuroyanagi M. Triterpene glycosides from the roots of Codonopsis lanceolata. Chem. Pharm. Bull. 56: 308-314 (2008) https://doi.org/10.1248/cpb.56.308
  6. Xu LP, Wang H, Yuan Z. Triterpenoid saponins with anti-Inflammatory activity from Codonopsis lanceolata. Planta Med. 74: 1412-1415 (2008) https://doi.org/10.1055/s-2008-1081318
  7. Lee KT, Choi J, Jung WT, Nam JH, Jung HJ, Park HJ. Structure of a new echinocystic acid bisdesmoside isolated from Codonopsis lanceolata roots and the cytotoxic activity of prosapogenins. J. Agr. Food Chem. 50: 4190-4193 (2002) https://doi.org/10.1021/jf011647l
  8. Park SJ, Park DS, Lee SB, He X, Ahn J, Yoon WB, Lee HY. Enhancement of antioxidant activities of Codonopsis lanceolata and fermented Codonopsis lanceolata by ultra high pressure extraction. J. Korean Soc. Food Sci. Nutr. 39: 1899-1902 (2010) https://doi.org/10.3746/jkfn.2010.39.12.1898
  9. Kim SS, Jeong MH, Seo YC, Kim JS, Kim NS, Yoon WB, Ahn J, Hwang B, Park DS, Park SJ, Lee HY. Comparison of antioxidant activities by high pressure extraction of Codonopsis lanceolata from different production areas. Korean J. Medcinal Crop Sci. 18: 248-254 (2010)
  10. He X, Kim SS, Park SJ, Seong DH, Yoon WB, Lee HY, Park DS, Ahn J. Combined effects of probiotic fermentation and highpressure extraction on the antioxidant, antimicrobial, and antimutagenic activities of deodeok (Codonopsis lanceolata). J. Agr. Food Chem. 58: 1719-1725 (2009)
  11. Kwak YS, Choi KH, Kyung JS, Won JY, Rhee MH, Lee JG, Hwang MS, Kim SC, Park CK, Song KB, Han GH. Effects of high temperature heating on the some physicochemical properties of Korean red ginseng (Panax ginseng C.A. Meyer) water extract. J. Ginseng Res. 32: 120-126 (2008) https://doi.org/10.5142/JGR.2008.32.2.120
  12. Hong HD, Kim YC, Rho J, Kim KT, Lee YC. Changes on physicochemical peoperties of Panax ginseng C.A. Meyer during repeated steaming process. J. Ginseng Res. 31: 222-229 (2007) https://doi.org/10.5142/JGR.2007.31.4.222
  13. Hubert J, Berger M, Nepveu Fi, Paul Fi, Dayd J. Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem. 109: 709-721 (2008) https://doi.org/10.1016/j.foodchem.2007.12.081
  14. Oboh G, Alabi KB, Akindahunsi AA. Fermentation changes the nutritive values, polyphenol distribution, and antioxidant properties of Parkia giglobosa seeds (African locust beans). Food Biotechnol. 22: 363-376 (2008) https://doi.org/10.1080/08905430802463404
  15. Katina K, Liukkonen KH, Kaukovirta-Norja A, Adlercreutz H, Heinonen SM, Lampi AM, Pihlava JM, Poutanen K. Fermentation- induced changes in the nutritional value of native or germinated rye. J. Cereal Sci. 46: 348-355 (2007) https://doi.org/10.1016/j.jcs.2007.07.006
  16. Juan MY, Chou CC. Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food Microbiol. 27: 586-591 (2010) https://doi.org/10.1016/j.fm.2009.11.002
  17. Lee HY, He X, Ahn J. Enhancement of antimicrobial and antimutagenic activities of Korean barberry (Berberis koreana Palib.) by the combined process of high-pressure extraction with probiotic fermentation. J. Sci. Food Agr. 90: 2399-2404 (2010) https://doi.org/10.1002/jsfa.4098
  18. Singleton VL, Rossi JA Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144-158 (1965)
  19. Moreno MIN, Isla MI, Sampietro AR, Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71: 109-114 (2000) https://doi.org/10.1016/S0378-8741(99)00189-0
  20. Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agr. Food Chem. 40: 945-948 (1992) https://doi.org/10.1021/jf00018a005
  21. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 9th ed. Approved standard M07- A8. Clinical and Laboratory Standards Institute. Wayne, PA, USA (2009)
  22. Choe M, Kim DJ, Lee HJ, You JK, Seo DJ, Lee JH. A study on the glucose regulating enzymes and antioxidant activities of water extract frommedicinal herbs. K. Korean Soc. Food Sci. Nutr. 37: 542-547 (2008) https://doi.org/10.3746/jkfn.2008.37.5.542
  23. Jeong SW, Lee NK, Kim SJ, Han DS. Screening of tyrosinase inhibitor from plants Korean J. Food Sci. Technol. 27: 891-896 (1995)
  24. Ellman GL, Courtney KD, Andres V, Fearherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95 (1961) https://doi.org/10.1016/0006-2952(61)90145-9
  25. Lee GD, Yoon SR, Kim J-O, Hur SS, Seo KI. Monotoring on the tea with steaming and drying process of germinated buckwheat. J. Korean Soc. Food Sci. Nutr. 33: 212-217 (2004) https://doi.org/10.3746/jkfn.2004.33.1.212
  26. Ahn HY, Heo SJ, Kang MJ, Lee JH, Cha JY, Cho YS. Antioxidative activity and chemical characteristics of leaf and fruit extracts from Thuja orientalis. J. Life Sci. 21: 746-752 (2011) https://doi.org/10.5352/JLS.2011.21.5.746
  27. Lee NY, Kim YK, Choi I, Cho SK, Hyun JN, Choi JS, Park KH, Kim KJ, Lee MJ. Biological activity of barley (Hordeum vulgare L.) and barley by-product extracts. Food Sci. Biotechnol. 19: 785-791 (2010) https://doi.org/10.1007/s10068-010-0110-2
  28. Lee JW, Do JH. Current studies on browning reaction products and acidic polysaccharide in Korean red ginseng. J. Ginseng Res. 30: 41-48 (2006) https://doi.org/10.5142/JGR.2006.30.1.041
  29. Sreeramulu G, Zhu Y, Knol W. Kombucha fermentation and its antimicrobial activity. J. Agr. Food Chem. 48: 2589-2594 (2000) https://doi.org/10.1021/jf991333m
  30. McDougall GJ, Shpiro F, Dobson P, Smith P, Blake A, Stewart D. Different polyphenolic components of soft fruits inhibit $\alpha$- amylase and $\alpha$-glucosidase. J. Agr. Food Chem. 53: 2760-2766 (2005) https://doi.org/10.1021/jf0489926
  31. Xu ML, Wang L, Hu JH, Wang MH. Antioxidant and $\alpha$-glucosidase inhibitory activities of the extract from Sparganium stoloniferum Buch.-Ham. root and its constituent compounds. J. Food Sci. Nutr. 14: 354-357 (2009) https://doi.org/10.3746/jfn.2009.14.4.354
  32. Kim JS, WKwon CS, Som KH, Kim JI.$\alpha$-Glucosidase inhibitory activities of some wild vegetable extracts. J. Food Sci. Nutr. 3: 174-176 (2000)
  33. Kubo I, Kinst-Hori I. Flavonols from saffron flower: Tyrosinase inhibitory activity and inhibition mechanism. J. Agr. Food Chem. 47: 4121-4125 (1999) https://doi.org/10.1021/jf990201q
  34. Kim YC, Takaya Y, Chung SK. Tyrosinase inhibition and mutagenicity of phenolic compounds from mulberry leaves. J. Food Sci. Nutr. 12: 119-121 (2007) https://doi.org/10.3746/jfn.2007.12.2.119
  35. Kang JS, Kang SK, Kim HS. Preparation and characteristics of bread by medicinal herb composites with cognitive function. J. Korean Soc. Food Sci. Nutr. 38: 1131-1138 (2009) https://doi.org/10.3746/jkfn.2009.38.9.1131
  36. Yuk DY, Kim TI, Park SG, Park HK, Yoon YK, Hong JT. Improvement of memory impairment by L-theanine through inhibition of acetylcholinesterase activity in mice. Yakhak Heoji 51: 409-414 (2007)

Cited by

  1. Physicochemical and Sensory Characteristics of Hot Water Extracts of Codonopsis lanceolata Root Skin and Flesh with Different Heat Treatments vol.48, pp.2, 2016, https://doi.org/10.9721/KJFST.2016.48.2.104
  2. Increasement of antioxidative activity in Codonopsis lanceolata adventitious root treated by Methyl jasmonate and salicylic acid vol.40, pp.3, 2013, https://doi.org/10.5010/JPB.2013.40.3.178
  3. Evaluation of Physicochemical Properties and Enhancement of Antioxidant Activities of Dioscorea batatas by Stepwise Steaming Process vol.25, pp.6, 2015, https://doi.org/10.17495/easdl.2015.12.25.6.1049
  4. Antioxidant Activities and Quality Characteristics of Fermented Codonopsis lanceolata Tea according to Heating Processes vol.26, pp.4, 2013, https://doi.org/10.9799/ksfan.2013.26.4.693
  5. Physicochemical Composition and Antioxidant Activities of Korean Dioscorea Species     vol.25, pp.5, 2015, https://doi.org/10.17495/easdl.2015.10.25.5.880
  6. Characteristics and Antioxidant Activities of Rehmanniae radix Powder vol.42, pp.1, 2013, https://doi.org/10.3746/jkfn.2013.42.1.062
  7. Antioxidant Activities of Processed Deoduck (Codonopsis lanceolata) Extracts vol.42, pp.6, 2013, https://doi.org/10.3746/jkfn.2013.42.6.924