DOI QR코드

DOI QR Code

An Enhanced Spatial Fuzzy C-Means Algorithm for Image Segmentation

영상 분할을 위한 개선된 공간적 퍼지 클러스터링 알고리즘

  • Truong, Tung X. (School of Electrical Engineering, University of Ulsan) ;
  • Kim, Jong-Myon (School of Electrical Engineering, University of Ulsan)
  • Received : 2011.05.09
  • Accepted : 2011.06.24
  • Published : 2012.02.29

Abstract

Conventional fuzzy c-means (FCM) algorithms have achieved a good clustering performance. However, they do not fully utilize the spatial information in the image and this results in lower clustering performance for images that have low contrast, vague boundaries, and noises. To overcome this issue, we propose an enhanced spatial fuzzy c-means (ESFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors in a $3{\times}3$ square window. To evaluate between the proposed ESFCM and various FCM based segmentation algorithms, we utilized clustering validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), and Xie-Bdni function ($V_{xb}$). Experimental results show that the proposed ESFCM outperforms other FCM based algorithms in terms of clustering validity functions.

FCM(fuzzy c-means)은 일반적으로 영상 분할에서 좋은 성능을 보인다. 하지만 공간 정보를 사용하지 않는 일반적인 FCM 알고리즘은 낮은 대비의 영상, 경계선이 뚜렷하지 않은 영상, 잡음이 포함된 영상의 분할에는 좋지 않은 성능을 보인다. 이와 같은 문제를 해결하기 위해 본 논문에서는 3x3 크기의 윈도우를 이용하여 윈도우 내의 중심 픽셀과 주변 픽셀간의 거리 정보를 소속 함수에 추가한 개선된 공간적 퍼지 클러스터링 알고리즘을 제안한다. 본 논문에서는 분할 계수, 분할 엔트로피, Xie-Bdni 함수와 같은 클러스터링 검증 함수를 이용하여 FCM 기반의 다양한 클러스터링 알고리즘과 제안한 알고리즘과의 성능을 비교하였다. 성능 평가 결과 제안한 알고리즘이 기존의 FCM기반의 클러스터링 알고리즘보다 클러스터링 검증 함수에서 성능이 우수함을 확인 할 수 있었다.

Keywords

References

  1. N. R. Pal, S. K. Pal, "A Review on Image Segmentation Techniques," Patter Recognition, Vol. 26, No. 9, pp. 1277-1294, Sept. 1993. https://doi.org/10.1016/0031-3203(93)90135-J
  2. K. S. Fu, J. K. Mu, "A Survey on Image Segmentation," Pattern Segmentation, Vol. 13, No. 1, pp. 3-16, 1981.
  3. J. C. Bezdek, "Pattern Recognition with Fuzzy Objective Function Algorithms," Pleum Press, New York, 1981.
  4. J. C. Bezdek, J. Keller, R. Krisnapuram, N. Pal, "Fuzzy Models and Algorithms for Pattern Recogn ition and Image Processing," Kluwer Academ ic, Norwell, 2005.
  5. S. Naz, H. Majeed, H. Irshad, "Image Segmentation Using Fuzzy Clustering: A Survey," in Proc. IEEE Int'l Conf. Emerging Technologies, pp. 181-186, Nov. 2010.
  6. L. Szilagyi, Z. Benyo, S. M. Szilagyi, H. S. Adam, "MR Brain Image Segmentation Using an Enhanced Fuzzy C-Means Algorithm," in Proc. IEEE Int'l Conf. Eng. in Medicine and Biology Soc., Vol. 1, pp. 724-726, April 2003.
  7. S. Chen, D. Zhang, "Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel-Induced Distance Measure," IEEE Trans. Syst., Man, and Cybernetics-Part B: Cybernetics, Vol. 34, No. 4, pp. 1907-1916, July 2004. https://doi.org/10.1109/TSMCB.2004.831165
  8. W. Cai, S. Chen, D. Zhang, "Fast and Robust Fuzzy C-Means Clustering Algorithms Incorporating Local Information for Image Segmentation," Pattern Recognition, Vol. 40, No. 3, pp. 825-838, March 2007. https://doi.org/10.1016/j.patcog.2006.07.011
  9. D. L. Pham, "Fuzzy Clustering with Spatial Constraints," in Proc. Int'l Conf. Image Proc., Vol. 2, pp. 65-68, Hong Kong, Dec. 2002.
  10. S. R. Kannan, S. Ramathilagam, P. Pandiyarajan, A. Sathya, "Fuzzy Clustering Approach in Segmen tation of T1-T2 Brain MRI," Int'l J. Recent Trends in Eng., Vol. 2, No. 1, pp. 157-160, Nov. 2009.
  11. S. Krinidis, V. Chatzis, "A Robust Fuzzy Local Information C-Means Clustering Algorithm," IEEE Trans. Image Proc., Vol, 19, No. 5, pp. 1328-1337, Jan. 2010. https://doi.org/10.1109/TIP.2010.2040763
  12. A. W. C. Liew, S. H. Leung, W. H. Lau, "Fuzzy Image Clustering Incorporating Spatial Continuity," IEE Proc. Vision, Image and Signal Proc., Vol. 147, No. 2, pp. 185-192, April 2000. https://doi.org/10.1049/ip-vis:20000218
  13. N. A. Mohamed, M. N. Ahmed, A. Farag, "Modified Fuzzy C-Mean in Medical Image Segmentation," in Proc. IEEE Int'l Conf. Acoust., Speech, and Signal Proc., Vol. 6, pp. 3429-3432, March 1999.
  14. K. S. Chuang, H. L. Tzeng, S. Chen, J. Wu, T. J. Chen, "Fuzzy C-Means Clustering with Spatial Information for Image Segmentation," Computerize d Medical Imaging and Graphics, Vol. 30, No. 1, pp. 9-15, Jan. 2006. https://doi.org/10.1016/j.compmedimag.2005.10.001
  15. S. Z. Beevi, M. M. Sathik, "A Robust Segmentation Approach for Noisy Medical Images Using Fuzzy Clustering with Spatial Probability," European J. Scientific Research, Vol. 41, No. 3, pp. 437-451, 2010.
  16. N. R. Pal, J. C. Bezdek, "On Cluster Validity for the Fuzzy C-Means Model," IEEE Trans. Fuzzy System, Vol. 3, pp. 370-379, Aug. 1995. https://doi.org/10.1109/91.413225
  17. J. C. Bezdek, "Cluster Validity with Fuzzy Sets," J. Cybernetics and Syst., Vol. 3, pp. 58-73, 1973. https://doi.org/10.1080/01969727308546047
  18. J. C. Bezdek, "Mathematical Models for Systematic and Taxonomy," in Proc. Int'l Conf. Numerical Taxonomy, pp. 143-166, 1975.
  19. X. L. Xei, G. A. Beni, "Validity Measure for Fuzzy Clustering," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 3, pp. 841-846, Aug. 1991.