DOI QR코드

DOI QR Code

Personalized Recommendation System using FP-tree Mining based on RFM

RFM기반 FP-tree 마이닝을 이용한 개인화 추천시스템

  • Cho, Young-Sung (School of Computer Science & Information, DongYang Mirae University) ;
  • Ho, Ryu-Keun (School of Electrical & Computer Enginnering, Chungbuk National University)
  • 조영성 (동양미래대학 전산정보학부) ;
  • 류근호 (충북대학교 전기전자컴퓨터공학부)
  • Received : 2011.11.03
  • Accepted : 2011.12.06
  • Published : 2012.02.29

Abstract

A exisiting recommedation system using association rules has the problem, such as delay of processing speed from a cause of frequent scanning a large data, scalability and accuracy as well. In this paper, using a Implicit method which is not used user's profile for rating, we propose the personalized recommendation system which is a new method using the FP-tree mining based on RFM. It is necessary for us to keep the analysis of RFM method and FP-tree mining to be able to reflect attributes of customers and items based on the whole customers' data and purchased data in order to find the items with high purchasability. The proposed makes frequent items and creates association rule by using the FP-tree mining based on RFM without occurrence of candidate set. We can recommend the items with efficiency, are used to generate the recommendable item according to the basic threshold for association rules with support, confidence and lift. To estimate the performance, the proposed system is compared with existing system. As a result, it can be improved and evaluated according to the criteria of logicality through the experiment with dataset, collected in a cosmetic internet shopping mall.

기존의 연관규칙을 이용한 추천시스템은 매번 계속적으로 대량의 데이터를 스캔해야 하므로 속도가 느릴 뿐 아니라 확장성 문제와 정확도 문제가 있다. 본 논문에서는 사용자의 평가 자료에 의존하지 않고 묵시적인(Implicit)방법을 이용하여 RFM(Recency, Frequency, Monetary)기반 FP-tree 마이닝을 이용한 개인화 추천시스템을 제안한다. 구매 가능성이 높은 아이템을 찾기 위해서 고객정보와 구매이력정보를 기반으로 고객과 아이템의 속성 반영이 가능한 RFM기법과 FP-tree 마이닝을 이용한다. 제안 방법으로 RFM기반의 FP-tree 마이닝을 이용하여 후보집합의 발생없이 빈발항목을 구성하고 연관규칙을 생성한다. 생성된 연관규칙의 지지도, 신뢰도, 향상도를 사용하여 추천 효율성이 높은 아이템 추천이 가능하다. 성능평가를 위해 현업에서 사용하는 인터넷 화장품 아이템 쇼핑몰의 데이터를 기반으로 데이터 셋을 구성하여 기존의 시스템과 비교 실험을 통해 성능을 평가하여 효용성과 타당성을 입증하였다.

Keywords

References

  1. Chan Wook Park. "DataBase Marketing-Strengthen for Competited Enterprise using Customer's Information ", YeonAm Press, 1996.
  2. Agrawal, R. and Srikant, R, "Fast Algorithms for Mining Association Rules in Large Databases," In Proceedings of the VLDB, Santiago, Chile, pp.487-499, September, 1994.
  3. Young Sung Cho, Moon Haeng Heo, Keun Ho Ryu, "Implementation of Personalized Recommendation System using RFM method in Mobile Internet Environment", KSCI, 13th-2 Vol, pp 1-5, Mar, 2008
  4. Young Sung Cho, Keun Ho Ryu, "Implementation of Personalized Recommendation System using Demographic data and RFM method in e-Comme rce", 2008 IEEE International Conference on Management of Innovation & Technology Public ation, 2008.
  5. Jin Byeong Woon, Young Sung Cho, Keun Ho Ryu, "Personalized e-Commerce Recommendation System using RFM method and Association Rules", KSCI, 15th-12 Vol, pp 227-235, Dec, 2010 https://doi.org/10.9708/jksci.2010.15.12.227
  6. Jonathan L. Herlocker, Joseph A. Kosran, Al Borc hers, and John Riedl, "An Algorithm Framework for Performing Collaborative Filtering", Proceedings of the 1999 Conference on Rechearch and Developm ent in Information Retrival, 1999

Cited by

  1. Periodicity analysis using weighted sequential pattern in recommending service pp.1573-7543, 2019, https://doi.org/10.1007/s10586-018-2871-y