Abstract
Recently, k-nearest neighbors query methods based on wireless broadcasting environment are actively studied. The advantage of wireless broadcasting environment is the scalability that enables collective query processing for unspecified users connected to the server. However, in case existing k-NN query is applied in wireless broadcasting environment, there can be a disadvantage that backtracking may occur and consequently the query processing time is increasing. In this paper proposes a hierarchical bitmap-based spatial index in order to efficiently process the k-NN queries in wireless broadcasting environment. HBI reduces the bitmap size using such bitmap information and tree structure. As a result, reducing the broadcast cycle can reduce the client's tuning time and query processing time. In addition, since the locations of all the objects can be detected using bitmap information, it is possible to tune to necessary data selectively. For this paper, a test was conducted implementing HBI to k-NN query and the proposed technique was proved to be excellent by a performance evaluation.
최근 무선방송 환경을 기반으로 하는 k-최근접(k-Nearest Neighbor) 질의처리가 활발히 연구되고 있다. 무선방송환경의 장점은 서버 내에 존재하는 불특정 다수에게 일괄적으로 질의처리를 할 수 있는 확장성을 가진다는 것이다. 그러나 기존의 k-NN 질의는 무선방송환경에 적용할 경우 탐색과정에서 백트래킹이 발생하여 질의처리시간이 증가하는 단점을 가진다. 본 논문은 무선방송환경에서 k-NN 질의를 효과적으로 처리하기 위하여 계층적 비트맵 기반 공간색인(Hierarchical Bitmap-based Spatial Index: HBI)을 제안한다. HBI는 비트맵 정보와 트리 구조를 이용하여 비트맵의 크기를 줄인다. 결과적으로 방송주기를 줄임으로써 클라이언트의 청취시간과 질의처리 시간을 줄일 수 있다. 또한 비트맵 정보를 활용하여 객체의 위치를 모두 파악할 수 있기 때문에 필요한 데이터를 선택적으로 청취할 수 있다. 본 논문에서는 HBI를 k-NN 질의에 적용하여 실험을 실시하고 성능평가에서 제안 기법이 우수함을 증명한다.