Efficient One-Pot Synthesis of Acridinediones by Indium(III) Triflate-Catalyzed Reactions of β-Enaminones, Aldehydes, and Cyclic 1,3-Dicarbonyls

Quang Huy To, Yong Rok Lee, ${ }^{*}$ and Sung Hong Kim ${ }^{\dagger}$
School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea. *E-mail: yrlee@yu.ac.kr
${ }^{\dagger}$ Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu 702-701, Korea
Received December 15, 2011, Accepted December 30, 2011

An efficient one-pot synthesis of acridinediones by $\operatorname{In}(\mathrm{OTf})_{3}$-catalyzed reactions was developed starting from β-enaminones, aldehydes, and cyclic 1,3-diketones. The key strategies of these reactions involve domino Knoevenagel condensation/Michael addition/cyclodehydration reaction.

Key Words : Acridinedione, Indium(III) triflate, β-Enaminone

Introduction

Acridinediones and their derivatives possess a wide range of pharmaceutical activities, including antimicrobial, ${ }^{1}$ antimalarial, ${ }^{2}$ antitumor, ${ }^{3}$ anticancer, ${ }^{4}$ antibacterial, ${ }^{5}$ fungicidal, ${ }^{6}$ and DNA binding properties. ${ }^{7}$ These derivatives have been used in chemotherapy for the treatment of cancer ${ }^{2}$ and in the treatment of cardiovascular diseases, such as angina pectoris and hypertension. ${ }^{7}$ In addition, acridinediones exhibit important properties such as high fluorescence efficiency allowing them to be used as laser dyes. ${ }^{8}$
Given the importance of such activities and properties, a number of methods for the synthesis of acridinedione derivatives have been reported. Most of the methods include condensation of cyclic 1,3-dicarbonyls with arylaldehydes and ammonium acetate or anilines in the presence of Amber-lyst-15, ${ }^{9} p$-dodeccylbenzenesulfonic acid, ${ }^{10}$ triethylbenzyl ammonium chloride, ${ }^{11}$ ionic liquids, ${ }^{12}$ and microwave irradiation (Scheme 1). ${ }^{13}$ These reported reactions provided symmetrical compounds which contain two identical cyclohexane rings attached to a dihydropyridine ring.

Other one method for the synthesis of symmetrical and unsymmetrical acridinediones has been developed by the reaction of β-enaminones with arylaldehydes and 1,3dicarbonyls in ionic liquids (Scheme 2). ${ }^{14}$
Although several methods for the synthesis of acridine-

Scheme 1

Scheme 2
dione derivatives have been reported, there is still a demand for simple and cost effective methods. Indium(III) triflate has emerged as a prominent catalyst for the formation of acetals and thioacetals, ${ }^{15}$ aromatic electrophilic substitution, ${ }^{16}$ Diels-Alder reactions, ${ }^{17}$ and the formation of tetrahydrofurans and pyrans. ${ }^{18}$ Recently, we developed a new and useful methodology for the synthesis of arylmethylene bis(3-hydroxy-2-cyclohexene-1-ones) and xanthenediones via an $\operatorname{In}(\mathrm{OTf})_{3}$-catalyzed one-pot multi-component reaction. ${ }^{19}$ As part of an ongoing study of the efficacy of this catalyst, we herein describe a facile and general method for the synthesis of acridinedione derivatives by the reaction of β-enaminones with aldehydes and cyclic 1,3-dicarbonyls in the presence of indium (III) triflate as a mild catalyst.

Results and Discussion

To produce acridinedione derivatives, we first prepared several β-enaminones $\mathbf{1 a}$ - $\mathbf{1 d}$ by heating corresponding cyclic 1,3-dicarbonyls and amines in 80-91\% yield (Figure 1) according to a known reaction. ${ }^{20}$ Reaction of β-enaminone 1a with benzaldehyde (2a) and 1,3-cyclohexanedione (3a) in the presence of several Brønsted acid and Lewis acid catalysts was next investigated (Table 1). With $20 \mathrm{~mol} \%$ of ethylenediamine diacetate (EDDA) in refluxing chloroform for 12 h , only the uncyclized product $\mathbf{4 a}$ was produced in 60% yield. When $20 \mathrm{~mol} \%$ of EDDA was used as a catalyst in refluxing toluene for 24 h , both $\mathbf{4 a}$ and $\mathbf{5 a}$ were produced in 55 and 5% yield, respectively. With $20 \mathrm{~mol} \%$ of FeCl_{3} in refluxing methylene chloride for 12 h , two compounds were obtained in 45 and 4% yield, respectively. When we used

Figure 1

Table 1. Reaction of β-enaminone 1a with benzaldehyde (2a) and 1,3-cyclohexanedione (3a) under several catalysts

	 ca 3a			
Catalyst	Solvent	Condition	Yield (\%)	
			4a	5a
EDDA ($20 \mathrm{~mol} \%$)	CHCl_{3}	reflux, 12 h	60	0
EDDA ($20 \mathrm{~mol} \%$)	toluene	reflux, 24 h	55	5
$\mathrm{FeCl}_{3}(20 \mathrm{~mol} \%)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux, 12 h	45	4
$\mathrm{Yb}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$	toluene	reflux, 8 h	22	42
$\mathrm{In}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \mathrm{\%})$	xylene	reflux, 2 h	15	53
$\mathrm{In}(\mathrm{OTf})_{3}(10 \mathrm{~mol} \%)$	DMF	$100^{\circ} \mathrm{C}, 2 \mathrm{~h}$	0	85

$\mathrm{Yb}(\mathrm{OTf})_{3}$ and $\mathrm{In}(\mathrm{OTf})_{3}$ as catalysts ($10 \mathrm{~mol} \%$), yields of the desired cycloadduct $\mathbf{5 a}$ were increased. The two compounds were easily separated by column chromatography and
assigned by spectral analysis. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{4 a}$ shows a benzylic methine proton at $\delta 5.68 \mathrm{ppm}$, whereas a methine proton of 5 a is exhibited at $\delta 5.31 \mathrm{ppm}$. Further, clear assignments come from the hydroxyl and carbonyl absorptions at 3453 and $1670 \mathrm{~cm}^{-1}$ for $\mathbf{4 a}$ and carbonyl absorptions at $1636 \mathrm{~cm}^{-1}$ for 5a. Interestingly, treatment with $10 \mathrm{~mol} \%$ of $\operatorname{In}(\mathrm{OTf})_{3}$ in DMF at $100^{\circ} \mathrm{C}$ for 2 h , only 5 a was produced in 85% yield.
To expand the efficiency and generality of this methodology, additional reactions of β-enaminones $\mathbf{1 a - 1 d}$ with a variety of aldehydes and cyclic 1,3-diketones were next attempted in the presence of $10 \mathrm{~mol} \%$ of indium (III) triflate in DMF at $100{ }^{\circ} \mathrm{C}$. The results are summarized in Table 2. Reactions of 1a with benzaldehyde and dimedone, 1,3cyclopentanedione or 1,3 -indandione gave the desired products $\mathbf{5 b} \mathbf{- 5 d}$ in 76, 60, and 82% yield, respectively (entries $1-3$). Treatment of $\mathbf{1 a}$ with cyclic 1,3-dicarbonyls and aryl aldehydes including both electron-donating and electronwithdrawing groups on the benzene ring provided the corresponding cycloadducts $\mathbf{5 e - 5 i}$ in good yields (entries 48). Interestingly, reaction of $1 \mathbf{1 a}$ with 3-furancarboxaldehyde or 3-thiophenecarboxaldehyde gave products $\mathbf{5 j}$ and $\mathbf{5 k}$ in 70

Table 2. Additional reactions for the synthesis of a variety of acridinediones
Entry

Table 2. Continued
(
and 76% yield, respectively (entries 9 and 10). With β enaminones $\mathbf{1 b} \mathbf{- 1 d}$, the desired products $\mathbf{5 l} \mathbf{- 5 q}$ were produced in $72-85 \%$ yield (entries 11-16). Importantly, with acetaldehyde, the desired product 5 n was obtained in 76% yield (entry 13).

The formation of $\mathbf{5 a}$ in the presence of $\operatorname{In}(\mathrm{OTf})_{3}$ can be explained by the mechanism shown in Scheme 3. Benzaldehyde (2a) forms an oxygen-bonded complex in the presence of indium(III) trifluoromethanesulfonate to give $\mathbf{6}$, which is attacked by 1,3-cyclohexanedione (3a) to produce the intermediate 7 through Knoevenagel condensation.

Michael addition of $\mathbf{1 a}$ to $\mathbf{7}$ gives another intermediate 8, which undergoes deprotonation to yield 9 . Cyclodehydration of $\mathbf{9}$ under $\operatorname{In}(\mathrm{OTf})_{3}$ provides the desired cycloadduct $\mathbf{5 a}$.

In conclusion, a new and facile method for the synthesis of biologically interesting acridinediones by an $\operatorname{In}(\mathrm{OTf})_{3^{-}}$ catalyzed multi-component reaction was developed starting from β-enaminones, aldehydes, and cyclic 1,3-diketones. The key strategies of these reactions were one-pot domino Knoevenagel condensation/Michael addition/cyclodehydration reaction. The method provided several advantages such as low catalyst loading, short reaction time, high yield,

Scheme 3
and convenient synthesis of unsymmetrical acridinediones.

Experimental Section

1,3-Diketones and aldehydes were obtained from Aldrich Chemicals. Merck pre-coated silica gel plates (Art. 5554) with a fluorescent indicator were used for analytical TLC. Flash column chromatography was performed using silica gel 9385 (Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded using a Bruker Model ARX (300 MHz and 75 MHz , respectively) spectrometer in CDCl_{3}. The IR spectra were measured on a Jasco FTIR 5300 spectrophotometer. All HRMS were carried out at the Korea Basic Science Institute.

General Procedure for the Synthesis of Acridinedione Derivatives (5a-5q). To a mixture of β-enaminones (0.5 mmol), aldehydes (0.5 mmol), and 1,3-diketones (0.5 mmol) in DMF $(2 \mathrm{~mL})$ was added $\operatorname{In}(\mathrm{OTf})_{3}(28 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for $2-3 \mathrm{~h}$ until completion by TLC analysis. After completion, the reaction mixture was cooled to room temperature and was added water $(50 \mathrm{~mL})$. The mixture was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$ and washed with brine $(30 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude residue. Purification of the residue by column chromatography on silica gel gave products.

10-Benzyl-3,3-dimethyl-9-phenyl-3,4,6,7,9,10-hexahydro-acridine- $\mathbf{1 , 8 (2 H , 5 H}$)-dione (5a): A reaction of $\mathbf{1 a}$ (115 mg , 0.5 mmol), benzaldehyde ($53 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 1,3 -cyclohexanedione ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded 5a $(175 \mathrm{mg}, 85 \%)$ as a solid: $R_{f}=0.23$ (hexane/ethyl acetate $=$ 1:1); mp 104-106 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-$ $7.19(5 \mathrm{H}, \mathrm{m}), 7.11-6.96(5 \mathrm{H}, \mathrm{m}), 5.31(1 \mathrm{H}, \mathrm{s}), 4.85(2 \mathrm{H}, \mathrm{s})$, 2.64-2.55 ($1 \mathrm{H}, \mathrm{m}$), 2.45-2.18 ($5 \mathrm{H}, \mathrm{m}$), $2.11(2 \mathrm{H}, \mathrm{s}), 1.90-$ $1.75(2 \mathrm{H}, \mathrm{m}), 0.92(3 \mathrm{H}, \mathrm{s}), 0.80(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 196.0,195.9,152.9,150.7,146.1,137.1,129.3$, $128.0,127.9,127.8,125.9,125.5,116.0,115.4,50.2,48.9$, $40.2,36.6,32.7,31.8,28.6,28.2,26.8,21.5$; IR (KBr) 2954, $1712,1636,1568,1452,1376,1237,1180,735,701 \mathrm{~cm}^{-1}$;

HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{2}$: 411.2198. Found: 411.2198 .

10-Benzyl-3,3,6,6-tetramethyl-9-phenyl-3,4,6,7,9,10-hexa-
 ($115 \mathrm{mg}, 0.5 \mathrm{mmol}$), benzaldehyde ($53 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 5,5 -dimethyl-1,3-cyclohexanedione ($70 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $\mathbf{5 b}(167 \mathrm{mg}, 76 \%)$ as a solid: $R_{f}=0.33$ (hexane/ethyl acetate $=1: 1$); $\mathrm{mp} 186-188{ }^{\circ} \mathrm{C}$; lit. ${ }^{21} \mathrm{mp}$ 184$185{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.21(5 \mathrm{H}, \mathrm{m})$, 7.11-6.95 (5H, m), $5.28(1 \mathrm{H}, \mathrm{s}), 4.84(2 \mathrm{H}, \mathrm{s}), 2.43(2 \mathrm{H}, \mathrm{d}, J=$ $16.5 \mathrm{~Hz}), 2.24(2 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 2.10(4 \mathrm{H}, \mathrm{s}), 0.90(6 \mathrm{H}$, s), $0.79(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.7,150.8$, $145.9,137.1,129.2,127.9,125.9,125.5,115.2,50.1,48.8$, 40.2, 32.7, 32.1, 28.6, 28.2; IR (KBr) 2958, 1710, 1635, 1568, 1455, 1379, 1240, 1213, 740, $701 \mathrm{~cm}^{-1}$. HRMS m/z $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NO}_{2}$: 439.2511. Found: 439.2515 .

4-Benzyl-6,6-dimethyl-9-phenyl-2,3,5,6,7,9-hexahydro$\mathbf{1 H}$-cyclopenta[b]quinoline-1,8(4H)-dione (5c): A reaction of $\mathbf{1 a}(115 \mathrm{mg}, 0.5 \mathrm{mmol})$, benzaldehyde ($53 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 1,3 -cyclopentanedione ($49 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $\mathbf{5 c}(119 \mathrm{mg}, 60 \%)$ as a solid: $R_{f}=0.20$ (hexane/ ethyl acetate $=1: 1$); mp 200-202 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.24(5 \mathrm{H}, \mathrm{m}), 7.19-7.12(5 \mathrm{H}, \mathrm{m}), 5.00(1 \mathrm{H}$, s), $4.84(2 \mathrm{H}, \mathrm{s}), 2.58-2.53(2 \mathrm{H}, \mathrm{m}), 2.47-2.30(4 \mathrm{H}, \mathrm{m}), 2.11$ $(2 \mathrm{H}, \mathrm{s}), 0.91(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 202.1,195.7,165.1,150.8,145.3,136.7,129.5$, $128.2,128.1,128.0,126.3,125.4,120.6,115.8,50.1,48.9$, 39.6, 34.1, 34.0, 32.4, 29.0, 27.8, 25.1; IR (KBr) 2954, 1682, 1641, 1565, 1452, 1398, 1373, 1212, 1163, 798, 735, 701 cm^{-1}; HRMS m/z $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{2}: 397.2042$. Found: 397.2044.

5-Benzyl-7,7-dimethyl-10-phenyl-7,8-dihydro-5 H -indeno-[1,2-b]quinoline-9,11($6 \mathrm{H}, 10 \mathrm{H}$)-dione (5d): A reaction of 1a ($115 \mathrm{mg}, 0.5 \mathrm{mmol}$), benzaldehyde ($53 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 1,3 -indandione ($73 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $\mathbf{5 d}(182 \mathrm{mg}, 82 \%)$ as a solid: $R_{f}=0.62$ (hexane/ ethyl acetate $=1: 1$); mp 212-214 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.45-7.02(13 \mathrm{H}, \mathrm{m}), 6.88(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 5.28$ $(2 \mathrm{H}, \mathrm{q}, J=18.0 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{s}), 2.53(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz})$,
$2.33(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 2.20(2 \mathrm{H}, \mathrm{s}), 0.96(3 \mathrm{H}, \mathrm{s}), 0.92$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.8,191.9,156.2$, $151.8,145.1,137.1,136.9,134.1,131.9,129.6,128.4$, 128.3, 128.0, 126.4, 125.7, 121.8, 121.1, 117.1, 114.6, 50.7, 50.3, 39.6, 33.2, 32.8, 28.3; IR (KBr) 2958, 1685, 1653, $1628,1588,1453,1404,1373,1215,1164,1139,727,698$ cm^{-1}; HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{2}$: 445.2042. Found: 445.2043.
10-Benzyl-3,3-dimethyl-9-p-tolyl-3,4,6,7,9,10-hexahydro-acridine-1,8(2H,5H)-dione (5e): A reaction of $\mathbf{1 a}(115 \mathrm{mg}$, 0.5 mmol), p-tolualdehyde ($60 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 1,3 -cyclohexanedione ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $\mathbf{5 e}$ $(181 \mathrm{mg}, 85 \%)$ as a solid: $R_{f}=0.26$ (hexane/ethyl acetate $=$ 1:1); mp 87-90 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.32$ $(3 \mathrm{H}, \mathrm{m}), 7.17-7.13(4 \mathrm{H}, \mathrm{m}), 6.97(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 5.31$ $(1 \mathrm{H}, \mathrm{s}), 4.89(2 \mathrm{H}, \mathrm{s}), 2.68-2.56(1 \mathrm{H}, \mathrm{m}), 2.50-2.26(5 \mathrm{H}, \mathrm{m})$, $2.23(3 \mathrm{H}, \mathrm{s}), 2.18(2 \mathrm{H}, \mathrm{s}), 1.98-1.80(2 \mathrm{H}, \mathrm{m}), 0.98(3 \mathrm{H}, \mathrm{s})$, $0.88(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.9,195.8$, $152.5,150.4,143.3,137.2,135.3,129.3,128.8,128.0$, $127.9,125.5,116.4,115.6,50.2,48.9,40.3,36.6,32.8,31.6$, 28.6, 28.3, 26.8, 21.6, 21.2; IR (KBr) 2954, 1633, 1567, 1378, 1241, 1180, $734 \mathrm{~cm}^{-1}$; HRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{2}: 425.2355$. Found: 425.2359.
10-Benzyl-3,3,6,6-tetramethyl-9-p-tolyl-3,4,6,7,9,10-hexa-hydroacridine- $\mathbf{1 , 8}(\mathbf{2 H}, 5 \mathrm{H})$-dione (5f): A reaction of $\mathbf{1 a}$ ($115 \mathrm{mg}, 0.5 \mathrm{mmol}$), p-tolualdehyde ($60 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 5,5-dimethyl-1,3-cyclohexanedione ($70 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $\mathbf{5 f}(172 \mathrm{mg}, 76 \%)$ as a solid: $R_{f}=0.43$ (hexane/ethyl acetate $=1: 1$); $\mathrm{mp} 105-107{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.41-7.32 (3H, m), 7.18-7.14 ($4 \mathrm{H}, \mathrm{m}$), 6.97 $(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 5.27(1 \mathrm{H}, \mathrm{s}), 4.87(2 \mathrm{H}, \mathrm{s}), 2.46(2 \mathrm{H}, \mathrm{d}, J$ $=16.5 \mathrm{~Hz}), 2.27(2 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 2.22(3 \mathrm{H}, \mathrm{s}), 2.17(4 \mathrm{H}$, s), $0.97(6 \mathrm{H}, \mathrm{s}), 0.87(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.8, 150.7, 143.1, 137.2, 135.1, 129.2, 128.7, 127.9, 127.8, $125.5,115.3,50.1,48.8,40.2,32.7,31.8,28.5,28.2,21.1$; IR $(\mathrm{KBr}) 2956,1635,1570,1460,1376,1242,1205,1177,735$ cm^{-1}; HRMS m/z $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{2}: 453.2668$. Found: 453.2666.
10-Benzyl-9-(4-chlorophenyl)-3,3-dimethyl-3,4,6,7,9,10-hexahydroacridine- $\mathbf{1 , 8}(\mathbf{2 H}, 5 \mathrm{H})$-dione $(5 \mathrm{~g})$: A reaction of 1a ($115 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-chlorobenzaldehyde ($70 \mathrm{mg}, 0.5$ mmol), and 1,3 -cyclohexanedione ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $\mathbf{5 g}(189 \mathrm{mg}, 85 \%)$ as a solid: $R_{f}=0.23$ (hexane/ethyl acetate $=1: 1$); mp 196-198 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.52-7.43 (3H, m), 7.35-7.30 ($2 \mathrm{H}, \mathrm{m}$), 7.24$7.21(4 \mathrm{H}, \mathrm{m}), 5.40(1 \mathrm{H}, \mathrm{s}), 5.01(2 \mathrm{H}, \mathrm{s}), 2.81-2.72(1 \mathrm{H}, \mathrm{m})$, 2.62-2.37 ($5 \mathrm{H}, \mathrm{m}$), $2.29(2 \mathrm{H}, \mathrm{s}), 2.10-1.93(2 \mathrm{H}, \mathrm{m}), 1.09$ $(3 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.9$, $195.8,152.9,150.7,144.8,137.0,131.6,129.5,129.4$, $128.2,125.5,115.9,115.1,50.1,48.9,40.3,36.6,32.8,31.8$, 28.6, 28.3, 26.8, 21.6; IR (KBr) 2950, 1710, 1635, 1572, 1485, 1379, 1242, 1181, $738 \mathrm{~cm}^{-1} ;$ HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{ClNO}_{2}$: 445.1809 . Found: 445.1806.
10-Benzyl-9-(4-chlorophenyl)-3,3,6,6-tetramethyl-3,4,6, 7,9,10-hexahydroacridine-1,8(2H,5H)-dione (5h): A reaction of $\mathbf{1 a}(115 \mathrm{mg}, 0.5 \mathrm{mmol})$, 4-chlorobenzaldehyde (70 $\mathrm{mg}, 0.5 \mathrm{mmol}$), and 5,5-dimethyl-1,3-cyclohexanedione (70
$\mathrm{mg}, 0.5 \mathrm{mmol})$ in DMF (2 mL) afforded $\mathbf{5 h}(166 \mathrm{mg}, 70 \%)$ as a solid: $R_{f}=0.43$ (hexane/ethyl acetate $=1: 1$); mp 217$219{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.32(3 \mathrm{H}, \mathrm{m})$, 7.26-7.22 ($2 \mathrm{H}, \mathrm{m}$), 7.16-7.11 ($4 \mathrm{H}, \mathrm{m}$), $5.29(1 \mathrm{H}, \mathrm{s}), 4.91$ $(2 \mathrm{H}, \mathrm{s}), 2.51(2 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 2.33(2 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz})$, $2.21(2 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 2.15(2 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 0.99$ $(6 \mathrm{H}, \mathrm{s}), 0.88(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.8$, $150.9,144.7,137.1,131.6,129.6,129.4,128.2,128.1$, $125.5,115.1,50.1,48.9,40.4,32.8,32.1,28.6,28.3$; IR $(\mathrm{KBr}) 2958,1711,1635,1573,1465,1373,1240,1176,844$, $736 \mathrm{~cm}^{-1}$. HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{ClNO}_{2}$: 473.2122. Found: 473.2120.

10-Benzyl-3,3-dimethyl-9-(4-nitrophenyl)-3,4,6,7,9,10-hexahydroacridine- $\mathbf{1 , 8 (2 H , 5 H) \text { -dione (} 5 \mathrm { i } \text {): A reaction of }}$ 1a ($115 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-nitrobenzaldehyde ($76 \mathrm{mg}, 0.5$ mmol), and 1,3 -cyclohexanedione ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $\mathbf{5 i}(205 \mathrm{mg}, 90 \%)$ as a solid: $R_{f}=0.24$ (hexane/ethyl acetate $=1: 1$); mp 205-207 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.44(2 \mathrm{H}, \mathrm{d}, J=9.0$ $\mathrm{Hz}), 7.41-7.35(3 \mathrm{H}, \mathrm{m}), 7.14(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 5.39(1 \mathrm{H}$, s), $4.93(2 \mathrm{H}, \mathrm{s}), 2.73-2.64(1 \mathrm{H}, \mathrm{m}), 2.54-2.12(7 \mathrm{H}, \mathrm{m}), 2.02-$ $1.84(2 \mathrm{H}, \mathrm{m}), 1.00(3 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 195.8,195.7,153.8,153.4,151.3,146.2,136.7$, $129.5,129.0,128.3,125.4,123.4,115.2,114.3,50.0,49.0$, $40.3,36.4,33.1,32.8,28.5,28.3,26.8,21.5$; IR (KBr) 2958, 1635, 1568, 1515, 1345, 1243, 1180, $732 \mathrm{~cm}^{-1}$; HRMS m/z $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}: 456.2049$. Found: 456.2051.

10-Benzyl-9-(furan-3-yl)-3,3-dimethyl-3,4,6,7,9,10-hexa-hydroacridine- $\mathbf{1 , 8 (2 H , 5 H)}$-dione ($\mathbf{5 j}$): A reaction of $\mathbf{1 a}$ ($115 \mathrm{mg}, 0.5 \mathrm{mmol}$), 3-furaldehyde ($48 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 1,3 -cyclohexanedione ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $5 \mathbf{j}$ ($140 \mathrm{mg}, 70 \%$) as a solid: $R_{f}=0.26$ (hexane/ethyl acetate $=1: 1$); mp 86-88 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.36-7.21 ($4 \mathrm{H}, \mathrm{m}$), 7.09-7.04 (3H, m), $6.21(1 \mathrm{H}, \mathrm{s}), 5.25$ $(1 \mathrm{H}, \mathrm{s}), 4.89(2 \mathrm{H}, \mathrm{s}), 2.66-2.57(1 \mathrm{H}, \mathrm{m}), 2.45-2.26(5 \mathrm{H}, \mathrm{m})$, $2.23(2 \mathrm{H}, \mathrm{s}), 1.97-1.87(2 \mathrm{H}, \mathrm{m}), 1.00(3 \mathrm{H}, \mathrm{s}), 0.90(3 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.0,195.9,153.2,151.0$, 142.4, 139.3, 137.1, 129.9, 129.3, 128.0, 125.4, 115.3, 114.7, $110.6,50.2,48.8,40.3,36.6,32.8,28.8,28.2,26.8,23.0$, 21.7; IR (KBr) 2954, 1750, 1635, 1568, 1457, 1383, 1243, 1179, $735 \mathrm{~cm}^{-1}$; HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3}$: 401.1991. Found: 401.1987.

10-Benzyl-3,3-dimethyl-9-(thiophen-3-yl)-3,4,6,7,9,10-hexahydroacridine- $\mathbf{1 , 8}(\mathbf{2 H}, 5 \mathrm{H})$-dione $(5 \mathrm{k})$: A reaction of 1a ($115 \mathrm{mg}, 0.5 \mathrm{mmol}$), 3-thiophenecarboxaldehyde (56 mg , 0.5 mmol), and 1,3 -cyclohexanedione ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $\mathbf{5 k}(158 \mathrm{mg}, 76 \%)$ as a solid: $R_{f}=0.20$ (hexane/ethyl acetate $=1: 1$); mp 84-86 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.28(3 \mathrm{H}, \mathrm{m}), 7.10(1 \mathrm{H}, \mathrm{dd}, J=5.1,2.7$ $\mathrm{Hz}), 7.05-7.03(2 \mathrm{H}, \mathrm{m}), 6.96(1 \mathrm{H}, \mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}), 6.80-$ $6.79(1 \mathrm{H}, \mathrm{m}), 5.44(1 \mathrm{H}, \mathrm{s}), 4.87(2 \mathrm{H}, \mathrm{s}), 2.68-2.59(1 \mathrm{H}, \mathrm{m})$, 2.48-2.27 (5H, m), 2.24 ($2 \mathrm{H}, \mathrm{s}$), 2.02-1.84 ($2 \mathrm{H}, \mathrm{m}$), 1.00 $(3 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.0$, $195.9,153.2,151.0,146.7,137.0,129.3,128.0,127.9$, $125.5,124.9,120.4,115.8,115.2,50.2,48.8,40.3,36.6$, 32.8, 28.8, 28.2, 27.2, 26.8, 21.6; IR (KBr) 2954, 1634, $1568,1458,1383,1359,1179,739 \mathrm{~cm}^{-1} ;$ HRMS $m / z\left(\mathrm{M}^{+}\right)$

calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}: 417.1762$. Found: 417.1765 .

10-Benzyl-9-phenyl-3,4,6,7,9,10-hexahydroacridine-1,8 $\mathbf{(2 H , 5 H})$-dione (5I): A reaction of $\mathbf{1 b}(100 \mathrm{mg}, 0.5 \mathrm{mmol})$, benzaldehyde ($53 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 1,3-cyclohexanedione ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $\mathbf{5 1}(163 \mathrm{mg}$, 85%) as solid: $R_{f}=0.21$ (hexane/ethyl acetate $=1: 1$); mp 289-290 ${ }^{\circ} \mathrm{C}$; lit. ${ }^{7} \mathrm{mp} 291-294{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.01(10 \mathrm{H}, \mathrm{m}), 5.34(1 \mathrm{H}, \mathrm{s}), 4.86(2 \mathrm{H}, \mathrm{s}), 2.64-2.55$ $(2 \mathrm{H}, \mathrm{m}), 2.45-2.16(6 \mathrm{H}, \mathrm{m}), 1.96-1.75(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.1,152.6,146.2,137.0,129.4,128.2$, $128.0,127.9,126.1,125.5,116.4,49.0,36.7,31.7,26.9$, 21.6; IR (KBr) 2946, 1631, 1566, 1453, 1382, 1358, 1178, 1134, 940, $741,707 \mathrm{~cm}^{-1}$. HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{2}$: 383.1885. Found: 383.1887.

10-Benzyl-9-p-tolyl-3,4,6,7,9,10-hexahydroacridine-1,8 ($\mathbf{2 H}, \mathbf{5 H}$)-dione ($\mathbf{5 m}$): A reaction of $\mathbf{1 b}(100 \mathrm{mg}, 0.5 \mathrm{mmol})$, p-tolualdehyde ($60 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 1,3-cyclohexanedione ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $\mathbf{5 m}(151 \mathrm{mg}$, 76%) as a solid: $R_{f}=0.23$ (hexane/ethyl acetate $=1: 1$); mp $222-224{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.31(3 \mathrm{H}$, m), $7.18-7.12(4 \mathrm{H}, \mathrm{m}), 6.98(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{s})$, $4.91(2 \mathrm{H}, \mathrm{s}), 2.69-2.60(2 \mathrm{H}, \mathrm{m}), 2.50-2.27(6 \mathrm{H}, \mathrm{m}), 2.24$ $(3 \mathrm{H}, \mathrm{s}), 2.01-1.81(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.0, 152.5, 143.4, 137.0, 135.3, 129.3, 128.8, 127.9, 127.7, 125.4, 116.3, 48.9, 36.6, 31.2, 26.7, 21.5, 21.1; IR (KBr) 2948, 1636, 1565, 1368, 1240, 1177, 1135, 938, 818, 747, $702 \mathrm{~cm}^{-1}$; HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{2}: 397.2042$. Found: 397.2043.
10-Benzyl-9-methyl-3,4,6,7,9,10-hexahydroacridine-1,8 $\mathbf{(2 H , 5 H})$-dione (5n): A reaction of $\mathbf{1 b}(100 \mathrm{mg}, 0.5 \mathrm{mmol})$, acetaldehyde ($22 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 1,3-cyclohexanedione ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $\mathbf{5 n}(119 \mathrm{mg}$, 74%) as a solid: $R_{f}=0.17$ (hexane/ethyl acetate $=1: 1$); mp 201-203 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.09(5 \mathrm{H}$, m), 4.83 ($2 \mathrm{H}, \mathrm{s}$), 4.12-3.99 ($1 \mathrm{H}, \mathrm{m}$), 2.57-2.47 ($2 \mathrm{H}, \mathrm{m}$), 2.39$2.15(6 \mathrm{H}, \mathrm{m}), 1.93-1.75(4 \mathrm{H}, \mathrm{m}), 0.87(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.2,152.7,137.3,129.3$, 127.8, 125.3, 117.8, 48.7, 36.6, 26.6, 22.4, 21.8, 21.6; IR $(\mathrm{KBr}) 2957,1634,1568,1384,1250,1178,941,738,698$ cm^{-1}; HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}$: 321.1729. Found: 321.1730.
10-(4-Methoxybenzyl)-3,3-dimethyl-9-phenyl-3,4,6,7,9, 10-hexahydroacridine- $\mathbf{1 , 8 (2 H , 5 H}$)-dione (50): A reaction of $\mathbf{1 c}(130 \mathrm{mg}, 0.5 \mathrm{mmol})$, benzaldehyde ($53 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 1,3 -cyclohexanedione ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $50(185 \mathrm{mg}, 84 \%)$ as a solid: $R_{f}=0.25$ (hexane/ ethyl acetate $=1: 1$); mp $155-157{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.20-6.79(9 \mathrm{H}, \mathrm{m}), 5.30(1 \mathrm{H}, \mathrm{s}), 4.78(2 \mathrm{H}, \mathrm{s}), 3.72$ $(3 \mathrm{H}, \mathrm{s}), 2.65-2.56(1 \mathrm{H}, \mathrm{m}), 2.47-2.18(5 \mathrm{H}, \mathrm{m}), 2.10(2 \mathrm{H}, \mathrm{s})$, 1.91-1.72 ($2 \mathrm{H}, \mathrm{m}$), $0.92(3 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.9,195.8,159.2,152.9,150.7,146.1$, $128.8,128.0,127.8,126.7,125.9,116.0,115.3,114.6,55.4$, 50.1, 48.3, 40.3, 36.6, 32.7, 31.8, 28.6, 28.2, 26.7, 21.5; IR (KBr) 2954, 1711, 1636, 1569, 1513, 1377, 1246, 1179, 1032, 821, $702 \mathrm{~cm}^{-1}$; HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{3}$: 441.2304. Found: 441.2307.

10-(4-Methoxybenzyl)-3,3,6,6-tetramethyl-9-phenyl-3,

4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (5p): A reaction of $\mathbf{1 c}(130 \mathrm{mg}, 0.5 \mathrm{mmol})$, benzaldehyde (53 mg , 0.5 mmol), and 5,5-dimethyl-1,3-cyclohexanedione (70 mg , $0.5 \mathrm{mmol})$ in DMF (2 mL) afforded $\mathbf{5 p}(169 \mathrm{mg}, 72 \%)$ as a solid: $R_{f}=0.39$ (hexane/ethyl acetate $=1: 1$); mp 198-201 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-6.83(9 \mathrm{H}, \mathrm{m}), 5.26(1 \mathrm{H}$, s), $4.77(2 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{s}), 2.43(2 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 2.24$ $(2 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 2.13(4 \mathrm{H}, \mathrm{s}), 0.93(6 \mathrm{H}, \mathrm{s}), 0.82(6 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.8,159.3,150.9,146.0$, 128.9, 128.0, 126.8, 126.0, 115.4, 114.7, 55.5, 50.2, 48.4, 40.3, 32.9, 32.2, 28.6, 28.3; IR (KBr) 2957, 1712, 1634, 1570, 1513, 1458, 1377, 1245, 1176, 1034, $826 \mathrm{~cm}^{-1}$; HRMS $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{3}$: 469.2617. Found: 469.2621 .

3,3-Dimethyl-9,10-diphenyl-3,4,6,7,9,10-hexahydroacri-dine-1,8(2H,5H)-dione (5q): A reaction of $\mathbf{1 d}(108 \mathrm{mg}, 0.5$ mmol), benzaldehyde ($53 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 1,3 -cyclohexanedione ($56 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DMF (2 mL) afforded $\mathbf{5 q}$ $(168 \mathrm{mg}, 85 \%)$ as a solid: $R_{f}=0.38$ (hexane/ethyl acetate $=$ 1:1); mp 224-226 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-$ $7.41(3 \mathrm{H}, \mathrm{m}), 7.37-7.34(2 \mathrm{H}, \mathrm{m}), 7.20-7.12(4 \mathrm{H}, \mathrm{m}), 7.03-$ $6.98(1 \mathrm{H}, \mathrm{m}), 5.27(1 \mathrm{H}, \mathrm{s}), 2.29-1.89(7 \mathrm{H}, \mathrm{m}), 1.81-1.57$ $(3 \mathrm{H}, \mathrm{m}), 0.85(3 \mathrm{H}, \mathrm{s}), 0.72(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 196.0,195.9,151.8,149.8,146.4,139.0,129.4$, $128.1,127.8,125.9,115.4,114.5,50.3,41.7,36.8,32.4$, 32.3, 29.7, 28.3, 26.8, 21.1; IR (KBr) 2954, 1712, 1636, 1568, 1452, 1376, 1237, 1180, 735, $701 \mathrm{~cm}^{-1}$; HRMS m/z $\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{2}$: 397.2042. Found: 397.2040.

Acknowledgments. This research was financially supported by the Ministry of Knowledge Economy (MKE), Korea Institute for Advancement of Technology (KIAT) and Dae-Gyeong Leading Industry Office through the Leading Industry Development for Economic Region (2009-T-1-B-Y0-A-01).

References

1. (a) Shchekotikhin, Y. M.; Nikolaeva, T. G.; Shub, G. M.; Kriven'ko, A. P. Pharmaceut. Chem. J. 2001, 35, 206. (b) Pyrko, A. N. Russ. J. Org. Chem. 2008, 44, 1215.
2. Kidwai, M.; Bhatnagar, D. Tetrahedron Lett. 2010, 51, 2700.
3. Tu, S.; Zhang, X.; Shi, F.; Li, T.; Wang, Q.; Zhu, X.; Zhang, J.; Xu, J. J. Heterocycl. Chem. 2005, 42, 1155.
4. Gamage, S. A.; Spicer, J. A.; Atwell, G. J.; Finlay, G. J.; Baguley, B. C.; Denny, W. A. J. Med. Chem. 1999, 42, 2383.
5. Palani, K.; Thirumalai, D.; Ambalavanan, P.; Ponnuswamy, M. N.; Ramakrishnan, V. T. J. Chem. Crystallogr. 2005, 35, 751.
6. (a) Wainwright, M. J. Antimicrob. Chemother. 2001, 47, 1. (b) Srivastava, A.; Nizamuddin, C. Indian J. Heterocycl. Chem. 2004, 13, 261.
7. Venkatesan, K.; Pujari, S. S.; Srinivasan, K. V. Synth. Commun. 2009, 39, 228.
8. (a) Balalaie, S.; Chadegani, F.; Darviche, F.; Bijanzadeh, H. R. Chin. J. Chem. 2009, 27, 1953. (b) Li, L.-B.; Ji, S.-J.; Liu, Y. Chin. J. Chem. 2008, 26, 979.
9. (a) Das, B.; Thirupathi, P.; Mahender, I.; Reddy, V. S.; Rao, Y. K. J. Mol. Catal. A: Chem. 2006, 247, 233. (b) Kaya, M.; Yıldırır, Y.; Çelik, G. Y. Med. Chem. Res. 2011, 20, 293.
10. Jin, T.-S.; Zhang, J.-S.; Guo, T.-T.; Wang, A.-Q.; Li, T.-S. Synthesis 2004, 2001.
11. Wang, X.-S.; Zhang, M.-M.; Zeng, Z.-S.; Shi, D.-Q.; Tu, S.-J.; Wei, X.-Y.; Zong, Z.-M. ARKIVOC 2006, (ii), 117.
12. (a) Shi, D.-Q.; Ni, S.-N.; Yang, F.; Shi, J.-W.; Dou, G.-L.; Li, X.Y.; Wang, X.-S. J. Heterocycl. Chem. 2008, 45, 653. (b) Li, Y.-L.; Zhang, M.-M.; Wang, X.-S.; Shi, D.-Q.; Tu, S.-J.; Wei, X.-Y.; Zong, Z.-M. J. Chem. Res. 2005, 9, 600.
13. (a) Singh, S. K.; Singh, K. N. J. Heterocycl. Chem. 2011, 48, 69. (b) Hua, G.-P.; Li, T.-J.; Zou, X.; Tu, S.-J.; Zhu, S.-L.; Zhang, X.J.; Ji, S.-J.; Zhang, Y. Chin. J. Org. Chem. 2005, 25, 1294.
14. Wang, X.-S.; Zhang, M.-M.; Jiang, H.; Shi, D.-Q.; Tu, S.-J.; Wei, X.-Y.; Zong, Z.-M. Synthesis 2006, 4187.
15. (a) Kazahaya, K.; Hamada, N.; Ito, S.; Sato, T. Synlett 2002, 1535.
(b) Muthusamy, S.; Babu, S. A.; Gunanathan, C. Tetrahedron

2002, 58, 7897. (c) Mineno, T. Tetrahedron Lett. 2002, 43, 7975.
16. (a) Nagarajan, R.; Perumal, P. T. Tetrahedron 2002, 58, 1229. (b)

Chapmann, C. J.; Frost, C. G.; Hartley, J. P.; Whittle, A. J. Tetrahedron Lett. 2001, 42, 773.
17. Ali, T.; Chauhan, K. K.; Frost, C. G. Tetrahedron Lett. 1999, 40, 5621.
18. (a) Loh, T.-P.; Hu, Q.-Y.; Ma, L.-T. J. Am. Chem. Soc. 2001, 123, 2450. (b) Roussel, P. G.; Turner, N. J.; Dinan, L. N. J. Chem. Soc., Chem. Commun. 1995, 933. (c) Loh, T.-P.; Hu, Q.-Y.; Tan, K.-T.; Cheng, H.-S. Org. Lett. 2001, 3, 2669. (d) Ghosh, R.; Maiti, S. J. Mol. Catal. A: Chem. 2007, 264, 1.
19. Jung, D. H.; Lee, Y. R.; Kim, S. H.; Lyoo, W. S. Bull. Korean Chem. Soc. 2009, 30, 1989.
20. Wang, G.-W.; Miao, C.-B. Green Chem. 2006, 8, 1080.
21. Shchekotikhin, Y. M.; Getmanenko, Y. A.; Nikolaeva, T. G.; Kriven'ko, A. P. Chem. Heterocycl. Comp. 2001, 37, 1228.

