Facile Synthesis of 5-Alkylidene-1,5-dihydropyrrol-2-ones from Morita-Baylis-Hillman Adducts

Bo Ram Park, Cheol Hee Lim, Jin Woo Lim, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr
Received December 5, 2011, Accepted December 27, 2011

Key Words : 5-Alkylidene-1,5-dihydropyrrol-2-ones, 5-Hydroxypyrrol-2(5H)-ones, Morita-Baylis-Hillman adducts, γ-Alkylidenebutenolides

5-Alkylidene-1,5-dihydropyrrol-2-ones have received a special attention due to their abundance in biologically important substances including pukeleimide, ${ }^{\text {1a }}$ ampullicin,, b,c isoampullicin, ${ }^{1 \mathrm{~b}, \mathrm{c}}$ pulchellalactam, ${ }^{\text {dd-f }}$ pandamarine, ${ }^{\text {1b }}$ and holomycin, ${ }^{\text {1a }}$ as shown in Figure 1. Thus numerous methods for the synthesis of 5 -alkylidene-1,5-dihydropyrrol-2-ones have been reported; ${ }^{1,2}$ however, a facile synthetic pathway to this class of compounds is highly required until now. In addition, various 5-hydroxypyrrol- $2(5 H)$-one derivatives, the precursors of 5-alkylidene-1,5-dihydropyrrol-2-ones in this paper, have been known to possess interesting biological activites. ${ }^{3}$
Recently various cyclic compounds have been synthesized from Morita-Baylis-Hillman (MBH) adducts. ${ }^{4}$ Among the cyclic compounds, syntheses of various lactam derivatives have received much attention by us ${ }^{5}$ and other groups. ${ }^{6}$ Very recently, we reported a facile synthesis of γ-alkylidenebutenolides (such as 1a) from MBH bromides, as shown in Scheme $1 .^{7}$ As a continuous work, we decided to examine the synthesis of 5-alkylidene-1,5-dihydropyrrol-2-ones (such as 3a) from the readily available γ-alkylidenebutenolides. ${ }^{7}$

pulchellalactam

Figure 1

At the outset of our study, we examined the reaction of γ-propylidenebutenolide $\mathbf{1 a}{ }^{7}$ with ammonia in ethanol at room temperature, ${ }^{8}$ as shown in Scheme 2. As expected, 5-hydroxypyrrol-2 $(5 \mathrm{H})$-one 2 a was obtained in good yield (88%) by following the mechanism shown below in Scheme $2 .{ }^{8,9 \mathrm{~b}}$ Subsequent acid-catalyzed dehydration of 2a produced 5-propylidene-1,5-dihydropyrrol-2-one (3a) in good yield (97\%) in a highly stereoselective manner. As observed in a similar case ${ }^{8,9 \mathrm{~b}}$ and in our previous paper, ${ }^{7}$ the Z-isomer was formed exclusively due to the unfavorable steric hindrance between the ethyl group of a propylidene moiety and the phenyl group at the 4-position. However, the reaction of 1a and benzylamine afforded $\mathbf{4 a}$ in moderate yield (70\%) although excess amounts (10 equiv) of benzylamine were used. Moreover, an acid-catalyzed dehydration ${ }^{9}$ of 4 a produced a mixture of E / Z isomers of N-benzyl-5-propylidene1,5 -dihydropyrrol-2-one (5a). The Z-isomer was formed as a major product (51%) along with appreciable amounts of E isomer ($\mathbf{3 7 \%}$). The stereochemistry of $\mathbf{5 a}-Z$ was confirmed by NOE experiments. The ratio of E / Z stated that the unfavorable steric hindrance between the ethyl group of a propylidene moiety and the phenyl group at the 4-position is larger than that of the N-benzyl moiety. The Z-form of this compound could be synthesized more easily from 3a and benzyl bromide in good yield (90%) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$. In the reaction we did not observe the formation of $\mathbf{5 a}-E$ in any trace amount.

Encouraged by the successful results, we carried out the synthesis of 5-hydroxypyrrol-2(5 H)-ones 2b-d from γ alkylidenebutenolides $\mathbf{1 b}-\mathbf{d},{ }^{7}$ and the results are summarized in Table 1. The yields of $\mathbf{2 b} \mathbf{b} \mathbf{- d}$ were moderate to good (62$80 \%$). For the synthesis of compound 2d, we used THF as a co-solvent due to the limited solubility of $\mathbf{1 d}$ in EtOH . These compounds were converted to 5-alkylidene-1,5-dihydro-

Scheme 1

Scheme 2

Table 1. Conversion of γ-alkylidenebutenolides to 5-alkylidene-1,5-dihydropyrrol-2-ones 3a-d

${ }^{a}$ Prepared according to Ref. 7. ${ }^{b}$ Conditions: substrate $\mathbf{1}(1.0 \mathrm{mmol})$, $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{EtOH}(1: 1,4.0 \mathrm{~mL}), \mathrm{rt}, 24 \mathrm{~h} .{ }^{c}$ Conditions: substrate $2(0.5$ mmol), p - TsOH (0.3 equiv), 1,2-dichloroethane, $60^{\circ} \mathrm{C}, 1 \mathrm{~h} .{ }^{d} \mathrm{THF}$ was added as a co-solvent.
pyrrol-2-ones 3b-d in excellent yields (91-96\%) in the presence of $p-\mathrm{TsOH} .{ }^{9}$ In all entries, the corresponding Z isomers were formed exclusively, as in the case of 3a (vide supra).
As for the synthesis of $\mathbf{5 a - Z}$ (vide supra, Scheme 2), N benzylation reactions of $\mathbf{3 c}-Z$ and $\mathbf{3 d}-Z$ were carried out similarly, and compounds $\mathbf{5 c}-Z$ and $\mathbf{5 d}-Z$ were synthesized in good yields ($89-92 \%$), as shown in Scheme 3. The formation
of the corresponding E-form was not observed in any trace amount due to a similar steric reason.
In summary, an expedient synthetic procedure of 5-alkyl-idene-1,5-dihydropyrrol-2-ones was disclosed from the corresponding γ-alkylidenebutenolides which were prepared from the Morita-Baylis-Hillman bromides. The reaction of γ-alkylidenebutenolides and ammonia and subsequent dehydration produced 5 -alkylidene-1,5-dihydropyrrol-2-ones stereoselectively, and the stereochemistry was not changed during the benzylation to furnish a stereoselective synthetic protocol of N -benzyl-5-alkylidene-1,5-dihydropyrrol-2-ones.

Experimental Section

Typical Procedure for the Synthesis of 2a. To a stirred solution of γ-alkylidenebutenolide $\mathbf{1 a}^{7}(214 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{EtOH}(2.0 \mathrm{~mL})$ was added $\mathrm{NH}_{4} \mathrm{OH}(28 \%, 2.0 \mathrm{~mL})$, and the reaction mixture was stirred at room temperature for 24 h. After the aqueous extractive workup and column chromatographic purification process (hexanes/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 2: 1$), compound 2a was obtained as a white solid, 203 mg (88%). Other compounds were synthesized similarly, and the spectroscopic data of 2a-d are as follows.

Compound 2a: 88%; white solid, mp $164-166{ }^{\circ} \mathrm{C}$; IR (KBr) $3375,3214,1708,1666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 0.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.25-$ $1.41(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~s}$, 3H), 4.66 (br s, OH), 7.34-7.44 (m, 3H), 7.61-7.65 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.47,14.00,16.63,38.95$, $90.29,128.39,128.54,128.63,128.78,132.44,154.19$, 173.65; ESIMS $m / z 232\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 72.70; H, 7.41; N, 6.06. Found: C, 72.89 ; H,

Scheme 3

7.53; N, 5.97.

Compound 2b: 62%; white solid, mp $140-142{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 3335,3263,1702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.93-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.45-$ $2.55(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.77(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{br} \mathrm{s}, \mathrm{OH}), 6.99-7.02$ $(\mathrm{m}, 2 \mathrm{H}), 7.09-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.65$ (m, 2H), 7.79 (br s, NH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 9.54, 29.75, 38.62, 90.08, 125.87, 128.30, 128.32, 128.48, $128.55,128.80$, 128.94, 132.22, 141.15, 154.21, 173.79; ESIMS m/z $294\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 77.79 ; H, 6.53; N, 4.77. Found: C, 77.71; H, 6.42; N, 4.56.

Compound 2c: 80%; white solid, $\mathrm{mp} 114-116{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 3401,3293,2953,1700,1649 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 0.77(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-1.20(\mathrm{~m}, 5 \mathrm{H})$, $1.25-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.90(\mathrm{~m}, 1 \mathrm{H})$, $1.82(\mathrm{~s}, 3 \mathrm{H}), 4.80(\mathrm{br} \mathrm{s}, \mathrm{OH}), 7.33-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.64$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.46,13.82,22.31$, $22.81,31.53,36.65,90.35,128.36,128.54,128.64,128.75$, 132.44, 154.15, 173.68; ESIMS $m / z 260\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 74.10; H, 8.16; N, 5.40. Found: C, 74.44; H, 8.37; N, 5.19.

Compound 2d: 75%; white solid, $\mathrm{mp} 106-108^{\circ} \mathrm{C}$; IR (KBr) 3313, 3301, 1699, $1493 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 1.76(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{dd}, J=14.4$ and $8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.62 (dd, $J=14.4$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04 (br s, OH), 4.15 (dd, $J=8.7$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{br} \mathrm{s}, \mathrm{NH}), 7.04-7.24(\mathrm{~m}, 10 \mathrm{H})$, 7.32-7.38 (m, 3H), 7.45-7.51 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ $\mathrm{MHz}) \delta 9.60,42.23,46.27,89.31,126.28,126.57,127.41$, $127.93,128.35,128.56,128.58,128.65,128.76,128.92$, 132.10, 143.90, 144.64, 153.74, 172.36; ESIMS $m / z 370$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{C}, 81.27 ; \mathrm{H}, 6.27 ; \mathrm{N}$, 3.79. Found: C, 81.06; H, 6.44; N, 3.68.

Typical Procedure for the Synthesis of 3a-Z. A stirred solution of compound $\mathbf{2 a}(116 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $p-\mathrm{TsOH}$ ($27 \mathrm{mg}, 0.15 \mathrm{mmol}$) in 1,2-dichloroethane (1.0 mL) was heated to $60^{\circ} \mathrm{C}$ for 1 h . After the aqueous extractive workup and column chromatographic purification process $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{Et}_{2} \mathrm{O}, 20: 1$), compound $\mathbf{3 a -} Z$ was obtained as a white solid, $103 \mathrm{mg}(97 \%)$. Other compounds were synthesized similarly , and the spectroscopic data of $\mathbf{3 a - d}$ are as follows.

Compound 3a-Z: 97%; white solid, mp 102-104 ${ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 3183,1686 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.09$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.39(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.48(\mathrm{~m}, 3 \mathrm{H}), 8.91$ (br s, NH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.10,13.94,21.13$, $116.62,128.29,128.33,128.73,129.44,132.10,137.12$, 144.45, 172.20; ESIMS $m / z 214\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 78.84 ; \mathrm{H}, 7.09$; N, 6.57. Found: C, 78.79; H, 7.35; N, 6.41.

Compound 3b-Z: 91\%; white solid, mp $160-162{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 3190,1682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.94$ (s, 3H), $3.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16-7.31 (m, 7H), 7.33-7.45 (m, 3H), $9.79(\mathrm{br} \mathrm{s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.12,33.91,113.25,126.34$, $128.32,128.35,128.55,128.61,129.22,129.42,131.92$, 138.18, 139.46, 144.55, 172.76; ESIMS m/z $276\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}$: C, 82.88; H, 6.22; N, 5.09.

Found: C, 82.57; H, 6.03; N, 4.97.
Compound 3c-Z: 96%; white solid, mp $125-127^{\circ} \mathrm{C}$; IR (KBr) 3183, 2957, 1690, $1361 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.95(\mathrm{~s}$, $3 \mathrm{H}), 2.33(\mathrm{dt}, J=7.8$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.48(\mathrm{~m}, 3 \mathrm{H}), 9.17(\mathrm{br} \mathrm{s}, \mathrm{NH})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.06,13.84,22.37,27.47$, 31.50, 115.35, 128.24, 128.31, 128.68, 129.44, 132.16, 137.69, 144.30, 172.29; ESIMS m/z $242\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 79.63$; H, 7.94; N, 5.80. Found: C, 79.91 ; H, 8.08; N, 5.83.

Compound 3d-Z: 93\%; white solid, mp 207-209 ${ }^{\circ} \mathrm{C}$; IR (KBr) $3175,3028,1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.95(\mathrm{~s}, 3 \mathrm{H}), 5.24(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16-7.33(\mathrm{~m}, 12 \mathrm{H}), 7.39-7.48(\mathrm{~m}, 3 \mathrm{H}), 9.22(\mathrm{br} \mathrm{s}, \mathrm{NH})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.15,49.13,115.95,126.69$, $128.25,128.42,128.46,128.68,129.38,129.42,131.86$, 137.82, 143.15, 144.72, 172.39; ESIMS m/z $352\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 85.44 ; \mathrm{H}, 6.02 ; \mathrm{N}, 3.99$. Found: C, 85.78; H, 6.32; N, 3.85.

Typical Procedure for the Synthesis of 5a-Z. A stirred solution of compound $\mathbf{3 a}(85 \mathrm{mg}, 0.4 \mathrm{mmol})$, benzyl bromide ($103 \mathrm{mg}, 0.6 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(83 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was heated to reflux for 15 h . After the aqueous extractive workup and column chromatographic purification process (hexanes/EtOAc/CH2Cl ${ }_{2}$, 6:1:1), compound 5a- Z was obtained as colorless oil, $109 \mathrm{mg}(90 \%)$. Other compounds $\mathbf{5 c}-Z$ and $\mathbf{5 d}-Z$ were synthesized similarly, and the spectroscopic data including $\mathbf{4 a}$ are as follows.

Compound 5a-Z: 90\%; colorless oil; IR (film) 2964, $1691,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.78(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.25(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 7.13-7.17$ (m, 2H), 7.20-7.35 (m, 5H), 7.36-7.48 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.53$, $14,47,20.40,44.74,118.18,125.82,126.81,126.88,128.22$, $128.24,128.59,129.72,132.41,137.78,138.31,145.62$, 171.43; ESIMS $m / z 304\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}$: C, 83.13; H, 6.98; N, 4.62. Found: C, 83.23; H, 7.12; N, 4.46.

Compound 5c-Z: 89\%; colorless oil; IR (film) 2957, 2925, 1694, $1441 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.71$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.14(\mathrm{~m}, 4 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.17$ (dt, $J=7.8$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}$, $2 \mathrm{H}), 7.12-7.17$ (m, 2H), 7.19-7.37 (m, 5H), 7.38-7.47 (m, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.47,13.61,22.16$, 26.71, 32.14, 44.71, 116.89, 125.76, 126.62, 126.82, 128.16, $128.18,128.53,129.65,132.39,138.03,138.26,145.56$, 171.39; ESIMS $m / z 332\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 83.34 ; \mathrm{H}, 7.60$; N, 4.23. Found: C, 83.39; H, 7.85; N, 4.32.

Compound 5d-Z: 92%; yellow solid, $\mathrm{mp} 96-98^{\circ} \mathrm{C}$; IR (KBr) 3027, 1695, $1444 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.99(\mathrm{~s}, 3 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.79(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.24(\mathrm{~m}, 9 \mathrm{H})$, 7.26-7.46 (m, 7H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.64$, 44.64, 47.60, 117.12, 125.58, 126.50, 127.23, 127.68, 127.76, 128.37, 128.39, 128.59, 129.02, 129.65, 132.06,
138.18, 138.41, 143.85, 145.78, 171.50; ESIMS m/z 442 $\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}: \mathrm{C}, 87.04 ; \mathrm{H}, 6.16$; N, 3.17. Found: C, 86.89; H, 6.47; N, 3.04.

Compound 4a: 70%; white solid, $\mathrm{mp} 144-146{ }^{\circ} \mathrm{C}$; IR (KBr) 3324, 2959, 1675, $1436 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 0.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.37-0.49(\mathrm{~m}, 1 \mathrm{H}), 0.55-$ $0.66(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{br} \mathrm{s}$, $\mathrm{OH}), 4.42(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.20-7.46 (m, 8H), 7.57-7.62 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 9.91,13.10,16.03,36.51,42.05,93.46,127.33$, $128.39,128.41,128.55,128.73,128.75,129.71,132.29$, $138.35,151.52$, 171.36; ESIMS $m / z 322\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 78.47; H, 7.21; N, 4.36. Found: C, 78.75; H, 7.39; N, 4.18.

Typical Procedure for the Synthesis of 5a-E. A stirred solution of compound $\mathbf{4 a}(96 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $p-\mathrm{TsOH}$ $(16 \mathrm{mg}, 30 \mathrm{~mol} \%)$ in 1,2-dichloroethane (1.0 mL) was heated to $60^{\circ} \mathrm{C}$ for 1 h . After the aqueous extractive workup and column chromatographic purification process $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, compound $\mathbf{5 a -} E$ was obtained as colorless oil, $34 \mathrm{mg}(37 \%)$, along with $\mathbf{5 a -}$ Z ($46 \mathrm{mg}, 51 \%$). The spectroscopic data of $5 \mathbf{a}-E$ are as follows.

Compound 5a-E: 37\%; colorless oil; IR (film) 2964, $1688,1411 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.71(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H})$, $5.27(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.35(\mathrm{~m}$, 2H), 7.36-7.44 (m, 3H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,75 \mathrm{MHz}\right) \delta 9.14$, $14.66,20.37,42.74,118.12,126.95,127.05,128.10,128.38$, $128.53,128.61,131.45,134.67,137.05,137.79,142.70$, 169.40; ESIMS $m / z 304\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}$: C, 83.13; H, 6.98; N, 4.62. Found: C, 83.01; H, 7.17; N, 4.45 .

Acknowledgments. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (2011-0002570). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For the biologically interesting 5-alkylidene-1,5-dihydropyrrol-2ones, see: (a) Anders, J. T.; Gorls, H.; Langer, P. Eur. J. Org. Chem. 2004, 1897-1910 and further references cited therein. (b) Rico, R.; Bermejo, F. Tetrahedron Lett. 1996, 37, 5809-5812. (c) Bermejo, F. A.; Rico-Ferreira, R. J. Org. Chem. 2001, 66, 82878292. (d) Felluga, F.; Ghelfi, F.; Pagnoni, U. M.; Parsons, A. F.; Pattarozzi, M.; Roncaglia, F.; Valentin, E. Synthesis 2007, 18821886. (e) Bessho, J.-I.; Shimotsu, Y.; Mizumoto, S.; Mase, N.; Yoda, H.; Takabe, K. Heterocycles 2004, 63, 1013-1016. (f) Li, W.-R.; Lin, S. T.; Hsu, N.-M.; Chern, M.-S. J. Org. Chem. 2002, 67, 4702-4706
2. For the synthesis and synthetic applications of 5-alkylidene-1,5-dihydropyrrol-2-ones, see: (a) Coperet, C.; Sugihara, T.; Wu, G.; Shimoyama, I.; Negishi, E.-I. J. Am. Chem. Soc. 1995, 117, 3422-
3. (b) Haase, C.; Langer, P. Tetrahedron 2009, 65, 4530-4539. (c) Mykhaylychenko, S.; Harakat, D.; Dupas, G.; Shermolovich, Y. G.; Bouillon, J.-P. J. Fluorine Chem. 2009, 130, 418-427. (d) Ngwe, H.; Kinoshita, H.; Inomata, K. Bull. Chem. Soc. Jpn. 1994, 67, 3320-3326. (e) Kinoshita, H.; Ngwe, H.; Kobori, K.; Inomata, K. Chem. Lett. 1993, 1441-1442.
4. For the synthesis and biological activity of 5-hydroxypyrrol-2(5H)-ones, see: (a) Ma, S.; Xie, H. Org. Lett. 2000, 2, 38013803. (b) Boukouvalas, J; Loach, R. P.; Ouellet, E. Tetrahedron Lett. 2011, 52, 5047-5050 and further references cited therein. (c) Watson, A. F.; Liu, J.; Bennaceur, K.; Drummond, C. J.; Endicott, J. A.; Golding, B. T.; Griffin, R. J.; Haggerty, K.; Lu, X.; McDonnell, J. M.; Newell, D. R.; Noble, M. E. M.; Revill, C. H.; Riedinger, C.; Xu, Q.; Zhao, Y.; Lunec, J.; Hardcastle, I. R. Bioorg. Med. Chem. Lett. 2011, 21, 5916-5919.
5. For the general review on Baylis-Hillman reaction, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. (b) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447-5674. (c) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511-4574. (d) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1-48. (e) Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.; John Wiley \& Sons: New York, 1997; Vol. 51, pp 201-350. (f) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627-645. (g) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490. (h) Radha Krishna, P.; Sachwani, R.; Reddy, P. S. Synlett 2008, 28972912. (i) Gowrisankar, S.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron 2009, 65, 8769-8780.
6. For the synthesis of various lactams from MBH adducts in our group, see: (a) Lee, K. Y.; Lee, Y. J.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 143-146. (b) Kim, S. C.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 3463-3466. (c) Kim, S. C.; Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 1133-1139. (d) Lee, H. S.; Kim, S. J.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 1063-1066. (e) Lee, M. J.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1281-1285.
7. For the synthesis of various lactams from MBH adducts in other groups, see: (a) Amri, H.; El Gaied, M. M.; Ben Ayed, T.; Villieras, J. Tetrahedron Lett. 1992, 33, 6159-6160. (b) Buchholz, R.; Hoffmann, H. M. R. Helv. Chim. Acta 1991, 74, 1213-1220. (c) Singh, V.; Saxena, R.; Batra, S. J. Org. Chem. 2005, 70, 353356. (d) Singh, V.; Yadav, G. P.; Maulik, P. R.; Batra, S. Tetrahedron 2008, 64, 2979-2991. (e) Singh, V.; Yadav, G. P.; Maulik, P. R.; Batra, S. Tetrahedron 2006, 62, 8731-8739. (f) Coelho, F.; Diaz, G.; Abella, C. A. M.; Almeida, W. P. Synlett 2006, 435-439. (g) Basavaiah, D.; Rao, J. S. Tetrahedron Lett. 2004, 45, 16211625. (h) Ramachandran, P. V.; Madhi, S.; Bland-Berry, L.; Reddy, M. V. R.; O'Donnell, M. J. J. Am. Chem. Soc. 2005, 127, 1345013451. (i) Kawahara, S.; Nakano, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2003, 5, 3103-3105. (j) Song, Y. S.; Lee, C. H.; Lee, K.-J. J. Heterocyclic Chem. 2003, 40, 939-941.
8. Park, B. R.; Kim, K. H.; Lim, J. W.; Kim, J. N. Tetrahedron Lett. 2012, 53, 36-40.
9. (a) Abell, A. D.; Oldham, M. D.; Taylor, J. M. J. Org. Chem. 1995, 60, 1214-1220. (b) Beck, J. J.; Stermitz, F. R. J. Nat. Prod. 1995, 58, 1047-1055. (c) Tripathi, R. P.; Dwivedi, N.; Singh, N.; Misra, M. Med. Chem. Res. 2008, 17, 53-61.
10. For the acid-catalyzed dehydration of similar compounds, see: (a) Goh, W. K.; Black, D. StC.; Kumar, N. Tetrahedron Lett. 2007, 48, 9008-9011. (b) Goh, W. K.; Iskander, G.; Black, D. StC.; Kumar, N. Tetrahedron Lett. 2007, 48, 2287-2290.
