DOI QR코드

DOI QR Code

An Efficient Synthesis of Heterocyclic Analogues of Thioflavones from Haloheteroaromatic Acids

  • Lee, Jae-In (Department of Chemistry and Plant Resources Research Institute, College of Natural Science, Duksung Women's University)
  • Received : 2011.12.30
  • Accepted : 2012.01.13
  • Published : 2012.04.20

Abstract

Keywords

References

  1. Razdan, R. K.; Bruni, R. J.; Mehta, A. C.; Weinhardt, K. K.; Papanastassiou, Z. B. J. Med. Chem. 1978, 21, 643. https://doi.org/10.1021/jm00205a010
  2. Ares, J. J.; Outt, P. E.; Randall, J. L.; Johnston, J. N.; Murray, P. D.; O'Brien, L. M.; Weisshaar, P. S.; Ems, B. L. Bioorg. & Med. Chem. Lett. 1996, 6, 995. https://doi.org/10.1016/0960-894X(96)00134-5
  3. Wang, H.-K.; Bastow, K. F.; Cosentino, L. M.; Lee, K.-H. J. Med. Chem. 1996, 39, 1975. https://doi.org/10.1021/jm960008c
  4. Kataoka, T.; Watanabe, S.; Mori, E.; Kadomoto, R.; Tanimura, S.; Kohno, M. Bioorg. & Med. Chem. 2004, 12, 2397. https://doi.org/10.1016/j.bmc.2004.02.002
  5. Pal, M.; Dakarapu, R.; Parasuraman, K.; Subramanian, V.; Yeleswarapu, K. R. J. Org. Chem. 2005, 70, 7179. https://doi.org/10.1021/jo050828+
  6. Nussbaumer, P.; Lehr, P.; Billich, A. J. Med. Chem. 2002, 45, 4310. https://doi.org/10.1021/jm020878w
  7. Horvath, A.; Nussbaumer, P.; Wolff, B.; Billich, A. J. Med. Chem. 2004, 47, 4268. https://doi.org/10.1021/jm0407916
  8. Fuchs, F. C.; Eller, G. A.; Holzer, W. Molecules 2009, 14, 3814. https://doi.org/10.3390/molecules14093814
  9. Nakazumi, H.; Ueyama, T.; Kitao, T. J. Heterocyclic Chem. 1984, 21, 193. https://doi.org/10.1002/jhet.5570210138
  10. Nakazumi, H.; Watanabe, S.; Kitaguchi, T.; Kitao, T. Bull. Chem. Soc. Jpn. 1990, 63, 847. https://doi.org/10.1246/bcsj.63.847
  11. Dekermendjian, K.; Kahnberg, P.; Witt, M.-R.; Sterner, O.; Nielsen, M.; Liljefors, T. J. Med. Chem. 1999, 42, 4343. https://doi.org/10.1021/jm991010h
  12. Wadsworth, D. H.; Detty, M. R. J. Org. Chem. 1980, 45, 4611. https://doi.org/10.1021/jo01311a013
  13. Taylor, A. W.; Dean, D. K. Tetrahedron Lett. 1988, 29, 1845.
  14. Cordonnier, G.; Rolando, C.; Barbry, D. 9th Int. Electronic Conference on Synth. Org. Chem. 2005, 9, 1.
  15. French, K. L.; Angel, A. J.; Williams, A. R.; Hurst, D. R.; Beam, C. F. J. Heterocyclic Chem. 1998, 35, 45. https://doi.org/10.1002/jhet.5570350109
  16. Angel, A. J.; Finefrock, A. E.; French, K. L.; Hurst, D. R.; Williams, A. R.; Rampey, M. E.; Studer-Martinez, S. L.; Beam, C. F. Can. J. Chem. 1999, 77, 94. https://doi.org/10.1139/v98-216
  17. Kumar, P.; Rao, A. T.; Pandey, B. J. Chem. Soc., Chem. Commun. 1992, 1580.
  18. Kumar, P.; Rao, A. T.; Pandey, B. Synth. Commun. 1994, 24, 3297. https://doi.org/10.1080/00397919408010253
  19. Kumar, P.; Bodas, M. S. Tetrahedron 2001, 57, 9755. https://doi.org/10.1016/S0040-4020(01)00977-2
  20. Dhanak, D.; Keenan, R. M.; Burton, G.; Kaura, A.; Darcy, M. G.; Shah, D. H.; Ridgers, L. H.; Breen, A.; Lavery, P.; Tew, D. G.; West, A. Bioorg. & Med. Chem. Lett. 1998, 8, 3677. https://doi.org/10.1016/S0960-894X(98)00666-0
  21. Somogyi, L. Can. J. Chem. 2001, 79, 1159. https://doi.org/10.1139/v01-096
  22. Somogyi, L. J. Heterocyclic Chem. 2009, 46, 399. https://doi.org/10.1002/jhet.25
  23. Willy, B.; Muller, T. J. J. Synlett 2009, 1255.
  24. Lee, J. I. Bull. Korean Chem. Soc. 2009, 30, 710. https://doi.org/10.5012/bkcs.2009.30.3.710
  25. Lee, J. I.; Kim, M. J. Bull. Korean Chem. Soc. 2011, 32, 1383. https://doi.org/10.5012/bkcs.2011.32.4.1383
  26. Paquette, L. A., Ed. Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: New York, U. S. A., 1995; Vol. 4, p 2274.

Cited by

  1. A Novel Synthesis of Heterocyclic Analogues of Thioflavanones from Haloheteroaromatic Carboxylic Acids vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1253
  2. An efficient domino Knoevenagel/hetero-Diels–Alder route to some novel thiochromenoquinoline-fused polyheterocycles vol.145, pp.7, 2014, https://doi.org/10.1007/s00706-014-1187-8
  3. A glycerol mediated domino reaction: an efficient, green synthesis of polyheterocycles incorporating a new thiochromeno[2,3-b]quinoline unit vol.3, pp.43, 2012, https://doi.org/10.1039/c3ra43205j
  4. Synthesis, crystal structure, ABTS radical-scavenging activity, antimicrobial and docking studies of some novel quinoline derivatives vol.1070, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2014.04.009
  5. Synthesis of 1 H ‐Thiopyrano[4,3‐ c ]quinoline Scaffold via One‐pot Three‐component Cyclization vol.4, pp.41, 2012, https://doi.org/10.1002/slct.201903019
  6. Synthesis and Versatile Utilization of 2‐PYRIDYL and PYRIMIDYL‐RELATED Reagents vol.41, pp.7, 2012, https://doi.org/10.1002/bkcs.12061
  7. New Synthesis of Thioflavones by the Regioselective Cyclization of 1-(2-Benzylthio)phenyl-3-phenylprop-2-yn-1-ones Using Hydrobromic Acid vol.64, pp.4, 2012, https://doi.org/10.5012/jkcs.2020.64.4.239
  8. Novel Synthesis of Thioflavones and Their Pyridyl Analogs from 2-Mercaptobenzoic(nicotinic) Acid vol.65, pp.2, 2012, https://doi.org/10.5012/jkcs.2021.65.2.166
  9. A review of the syntheses of (thio)flavones, 4‐QUINOLONES , (thio)aurones, and azaaurones from 2′‐substituted alkynones vol.42, pp.12, 2012, https://doi.org/10.1002/bkcs.12412