DOI QR코드

DOI QR Code

Construction of fat1 Gene Expression Vector and Its Catalysis Efficiency in Bovine Fetal Fibroblast Cells

  • Liu, Boyang (College of Animal Science and Veterinary Medicine, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University) ;
  • Yang, Runjun (College of Animal Science and Veterinary Medicine, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University) ;
  • Li, Junya (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Lupei (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences) ;
  • Liu, Jing (College of Animal Science and Veterinary Medicine, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University) ;
  • Lu, Chunyan (College of Animal Science and Veterinary Medicine, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University) ;
  • Lian, Chuanjiang (College of Animal Science and Veterinary Medicine, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University) ;
  • Li, Zezhong (College of Animal Science and Veterinary Medicine, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University) ;
  • Zhang, Yong-Hong (College of Animal Science and Veterinary Medicine, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University) ;
  • Zhang, Liying (College of Animal Science and Veterinary Medicine, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University) ;
  • Zhao, Zhihui (College of Animal Science and Veterinary Medicine, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University)
  • Received : 2011.12.19
  • Accepted : 2012.02.21
  • Published : 2012.05.01

Abstract

The FAT-1 protein is an n-3 fatty acid desaturase, which can recognize a range of 18- and 20-carbon n-6 substrates and transform n-6 polyunsaturated fatty acids (PUFAs) into n-3 PUFAs while n-3 PUFAs have beneficial effect on human health. Fat1 gene is the coding sequence from Caenorhabditis elegans which might play an important role on lipometabolism. To reveal the function of fat1 gene in bovine fetal fibroblast cells and gain the best cell nuclear donor for transgenic bovines, the codon of fat1 sequence was optimized based on the codon usage frequency preference of bovine muscle protein, and directionally cloned into the eukaryotic expression vector pEF-GFP. After identifying by restrictive enzyme digests with AatII/XbaI and sequencing, the fusion plasmid pEF-GFP-fat1 was identified successfully. The pEF-GFP-fat1 vector was transfected into bovine fetal fibroblast cells mediated by Lipofectamine2000$^{TM}$. The positive bovine fetal fibroblast cells were selected by G418 and detected by RT-PCR. The results showed that a 1,234 bp transcription was amplified by reverse transcription PCR and the positive transgenic fat1 cell line was successfully established. Then the expression level of fat1 gene in positive cells was detected using quantitative PCR, and the catalysis efficiency was detected by gas chromatography. The results demonstrated that the catalysis efficiency of fat1 was significantly high, which can improve the total PUFAs rich in EPA, DHA and DPA. Construction and expression of pEF-GFP-fat1 vector should be helpful for further understanding the mechanism of regulation of fat1 in vitro. It could also be the first step in the production of fat1 transgenic cattle.

Keywords

References

  1. Abbadi, A., F. Domergue, J. Bauer, J. A. Napier, R. Welti, U. Zahringer, P. Cirpus and E. Heinz. 2004. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734-2748. https://doi.org/10.1105/tpc.104.026070
  2. Bauer, A. P., D. Leikam, S. Krinner, F. Notka, C. Ludwig, G. Langst and R. Wagner. 2010. The impact of intragenic CpG content on gene expression. Nucleic Acids Res. 38:3891-3908. https://doi.org/10.1093/nar/gkq115
  3. Connor, K. M., J. P. SanGiovanni, C. Lofqvist, C. M. Aderman, J. Chen, A. Higuchi, S. Hong, E. A. Pravda, S. Majchrzak and D. Carper et al. 2007. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat. Med. 13:868-873. https://doi.org/10.1038/nm1591
  4. Enser, M., K. Hallett, B. Hewitt, G. A. J. Fursey and J. D. Wood. 1996. Fatty acid content and composition of english beef, lamb and pork at retail. Meat Sci. 42:443-456. https://doi.org/10.1016/0309-1740(95)00037-2
  5. Enser, M., K. G. Hallett, B. Hewitt, G. A. J. Fursey, J. D. Wood and G. Harrington. 1998, Fatty acid content and composition of UK beef and lamb muscle in relation to production system and implications for human nutrition. Meat Sci. 49:329-341. https://doi.org/10.1016/S0309-1740(97)00144-7
  6. Gibson, R. A., M. A. Neumann and M. Makrides. 1997. Effect of increasing breast milk docosahexaenoic acid on plasma and erythrocyte phospholipid fatty acids and neural indices of exclusively breast fed infants. Eur. J. Clin. Nutr. 51:578-584. https://doi.org/10.1038/sj.ejcn.1600446
  7. He, C., X. Qu, L. Cui, J. Wang and J. X. Kang. 2009. Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc. Natl. Acad. Sci. USA. pp. 11370-11375.
  8. Kang, J. X. 2011. Omega-3: A link between global climate change and human health. Biotechnol. Adv. 29:388-390. https://doi.org/10.1016/j.biotechadv.2011.02.003
  9. Kang, J. X. and J. Wang. 2005. A simplified method for analysis of polyunsaturated fatty acids. BMC Biochem. 6:5. https://doi.org/10.1186/1471-2091-6-5
  10. Lai, L., J. X. Kang, R. Li, J. Wang, W. T. Witt, H. Y. Yong, Y. Hao, D. M. Wax, C. N. Murphy and A. Rieke et al. 2006. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat. Biotechnol. 24:435-436. https://doi.org/10.1038/nbt1198
  11. Lecoeur, H. 2002. Nuclear apoptosis detection by flow cytometry: influence of endogenous endonucleases. Exp. Cell Res. 277:1-14. https://doi.org/10.1006/excr.2002.5537
  12. Li, D., A. Sinclair, A. Wilson, S. Nakkote, F. Kelly, L. Abedin, N. Mann and A. Turner. 1999. Effect of dietary alpha-linolenic acid on thrombotic risk factors in vegetarian men. Am. J. Clin. Nutr. 69:872-882.
  13. Lopez-Huertas, E. 2010. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol. Res. 61:200-207. https://doi.org/10.1016/j.phrs.2009.10.007
  14. Lu, Y., D. Nie, W. T. Witt, Q. Chen, M. Shen, H. Xie, L. Lai, Y. Dai and J. Zhang. 2008. Expression of the fat-1 gene diminishes prostate cancer growth in vivo through enhancing apoptosis and inhibiting GSK-3 beta phosphorylation. Mol. Cancer Ther. 7:3203-3211. https://doi.org/10.1158/1535-7163.MCT-08-0494
  15. Marra, M. A., S. J. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. Butterfield, J. Khattra, J. K. Asano, S. A. Barber and S. Y. Chan et al. 2003. The Genome sequence of the SARS-associated coronavirus. Science 300:1399-1404. https://doi.org/10.1126/science.1085953
  16. Meesapyodsuk, D., D. W. Reed, C. K. Savile, P. H. Buist, S. J. Ambrose and P. S. Covello. 2000. Characterization of the regiochemistry and cryptoregiochemistry of a Caenorhabditis elegans fatty acid desaturase (FAT-1) expressed in Saccharomyces cerevisiae. Biochemistry 39:11948-11954. https://doi.org/10.1021/bi000756a
  17. Moussavi, A. R., R. O. Gilbert, T. R. Overton, D. E. Bauman and W. R. Butler. 2007a. Effects of feeding fish meal and n-3 fatty acids on milk yield and metabolic responses in early lactating dairy cows. J. Dairy Sci. 90:136-144. https://doi.org/10.3168/jds.S0022-0302(07)72615-2
  18. Moussavi, A. R., R. O. Gilbert, T. R. Overton, D. E. Bauman and W. R. Butler. 2007b, Effects of feeding fish meal and n-3 fatty acids on ovarian and uterine responses in early lactating dairy cows. J. Dairy Sci. 90:145-154. https://doi.org/10.3168/jds.S0022-0302(07)72616-4
  19. Norsker, N. H. and J. G. Støttrup. 1994. The importance of dietary HUFAs for fecundity and HUFA content in the harpacticoid, Tisbe holothuriae Humes. Aquaculture 125:155-166. https://doi.org/10.1016/0044-8486(94)90292-5
  20. Pan, D., L. Zhang, Y. Zhou, C. Feng, C. Long, X. Liu, E. Dong, S. Wang, R. Wan, J. Zhang and H. Chen. 2009. Production of fat1 transgene pig by somatic cell nuclear transfer. Science in China 39:295-302.
  21. Pereira, S. L., Y. S. Huang, E. G. Bobik, A. J. Kinney, K. L. Stecca, J. C. Packer and P. Mukerji. 2004, A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid. Biochem. J. 378:665-671. https://doi.org/10.1042/BJ20031319
  22. Sakuradani, E., T. Abe, K. Iguchi and S. Shimizu. 2005. A novel fungal omega3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Appl. Microbiol. Biotechnol. 66:648-654. https://doi.org/10.1007/s00253-004-1760-x
  23. Spychalla, J. P., A. J. Kinney and J. Browse. 1997. Identification of an animal omega-3 fatty acid desaturase by heterologous expression in Arabidopsis. Proc. Natl. Acad. Sci. USA 94:142-1147. https://doi.org/10.1073/pnas.94.1.142
  24. Stothard, P. 2000. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102, 1104.
  25. Wright, F. 1990. The 'effective number of codons' used in a gene. Gene 87:23-29. https://doi.org/10.1016/0378-1119(90)90491-9
  26. Zhu, G., H. Chen, X.Wu, Y. Zhou, J. Lu and J. Deng. 2008. A modified n-3 fatty acid desaturase gene from Caenorhabditis briggsae produced high proportion of DHA and DPA in transgenic mice. Transgenic Res. 17:717-725. https://doi.org/10.1007/s11248-008-9171-x

Cited by

  1. Effects of dietary n-6/n-3 polyunsaturated fatty acid ratios on the mass, and histological and ultrastructures of liver, spleen and thymus of 70-day-old Yangzhou Goslings vol.100, pp.2, 2015, https://doi.org/10.1111/jpn.12371