DOI QR코드

DOI QR Code

Effects of Two Halophytic Plants (Kochia and Atriplex) on Digestibility, Fermentation and Protein Synthesis by Ruminal Microbes Maintained in Continuous Culture

  • Riasi, A. (Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad) ;
  • Mesgaran, M. Danesh (Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad) ;
  • Stern, M.D. (Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota) ;
  • Moreno, M.J. Ruiz (Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota)
  • Received : 2011.07.31
  • Accepted : 2011.11.10
  • Published : 2012.05.01

Abstract

Eight continuous culture fermenters were used in a completely randomized design to evaluate various nutritional values of Kochia (Kochia scoparia) compared with Atriplex (Atriplex dimorphostegia). Dried and pelleted samples (leaves and stems) provided substrate for metabolism by ruminal microbes maintained in a continuous culture fermentation system. Results indicated that there were no differences (p>0.05) in dry matter (DM) and crude protein (CP) digestibility between the two halophytic plants. Atriplex had higher (p<0.05) organic matter (OM) digestibility compared with Kochia. Neutral detergent fiber (aNDF) digestibility of Atriplex (411 g/kg) was higher (p<0.05) than that of Kochia (348 g/kg), however acid detergent fiber (ADF) digestibility was higher (p<0.05) in Kochia compared with Atriplex (406 vs. 234 g/kg). There were no differences (p>0.05) between the two halophytic plants in molar proportion of acetate and propionate, but the concentration of butyrate and valerate in Kochia were about two fold of Atriplex (p<0.05). When Kochia provided substrate to the microbes, protein synthesis was higher (p<0.05) compared with feeding Atriplex (5.96 vs. 4.85 g N/kg of OM truly digested). It was concluded that Kochia scoparia and Atriplex dimorphostegia had similar digestibility of DM and CP. It appears that these halophytic plants may not have enough digestible energy for high producing ruminants.

Keywords

References

  1. Ariza, P., A. Bach, M. D. Stern and M. B. Hall. 2001. Effects of carbohydrates from citrus pulp and hominy feed on microbial fermentation in continuous culture. J. Anim. Sci. 79:2713-2718.
  2. AOAC. 2000. Official methods of analysis. 15th edn. Official Methods of Analysis of AOAC International, Arlington, Virginia, USA.
  3. Benjamin, R. W., Y. Lavie, M. Forti, D. Barkai, R. Yonatan and Y. Hefetz. 1995. Annual regrowth and edible biomass of two species of Atriplex and Cassia sturtii after browsing. J. Arid Environ. 29: 63-84. https://doi.org/10.1016/S0140-1963(95)80065-4
  4. Ben Salem, H., A. Nefzaoui and L. Ben Salem. 2004. Spineless cactus (Opuntia ficus-indica f. inermis) and oldman saltbush(Atriplex nummularia L.) as alternative supplements for growing Barbarine lambs given straw-based diets. Small Rumin. Res. 51:65-73. https://doi.org/10.1016/S0921-4488(03)00186-X
  5. Cohen, R. D. H., A. D. Iwaasa, M. E. Mann, E. Coxworth and J. A. Kernan. 1989. Studies on the feeding value of Kochia scoparia (L.) Schrad. Hay for beef cattle. Can. J. Anim. Sci. 69:735-743. https://doi.org/10.4141/cjas89-086
  6. Danesh Mesgaran, M., A. Riasi and M. D. Stern. 2004. Chemical composition and in vitro and in situ protein digestibility of some halophytes located in central Iran. In: Proceeding of the 2004 British Society of Animal Science, p. 242.
  7. Danesh Mesgaran, M. and M. D. Stern. 2005. Ruminal and post-ruminal protein disappearance of various feeds originating from Iranian plats varieties determined by the in situ mobile bag technique and alternative methods. Anim. Feed Sci. Technol. 118:31-46. https://doi.org/10.1016/j.anifeedsci.2004.10.009
  8. El- Shatnawi, M. K. J. and M. Turuk. 2002. Dry matter accumulation and chemical content of saltbush (Atriplex halimus) grown in Mediterranean desert shurblands. New Zealand J. Agric. Res. 45:139-144. https://doi.org/10.1080/00288233.2002.9513503
  9. El-Shatnawi, M. K. J. and A. Y. Abdullah. 2003. Composition changes of Atriplex nummularia L. under Mediterranean arid environment. Afr. J. Range Forage Sci. 20:253-257. https://doi.org/10.2989/10220110309485823
  10. Ghadaki, M. B., P. J. Van Soest, R. E. McDowell and B. Malekpour. 1975. Chemical composition and in vitro digestibility of some range forage species of Iran. In: Proceeding of the 1975 Evaluation and Mapping of Tropical African Rangelands Seminar.
  11. Gihad, E. A. and H. M. El Shaer. 1992. Utilization of halophytes by livestock on rangelands. In: Halophytes as a Source of Livestock and for Rehabilitation of Degraded Lands Squires (Ed. V. R. Ayoub). Kluwer Academic Publishers, Dordrecht. pp. 77-96.
  12. Hannah, S. M., M. D. Stern and F. R. Ehle. 1986. Evaluation of dual flow continuous culture system for estimating bacterial fermentation in vivo of mixed diets containing various soybean products. Anim. Feed Sci. Technol. 16:51-62. https://doi.org/10.1016/0377-8401(86)90049-0
  13. Hoover, W. H. 1986. Chemical factors involved in ruminal fiber digestion. J. Dairy Sci. 69:2755-2766. https://doi.org/10.3168/jds.S0022-0302(86)80724-X
  14. Hussein, H. S., M. D. Stern and R. M. Jordan. 1991. Influence of dietary protein and carbohydrate sources on nitrogen metabolism and carbohydrate fermentation by ruminal microbes in continuous culture. J. Anim. Sci. 69:2123-2133.
  15. Licitra, G., T. M. Hernandez and P. J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358. https://doi.org/10.1016/0377-8401(95)00837-3
  16. Lopez, S., J. Dijkstra and J. France. 2000. Prediction of energy supply in ruminants, with emphasis on forages. In: Forage Evaluation in Ruminant Nutrition (Ed. D. I. Given, E. Owen, R. F. E. Axford and H. M. Omed) CABI Publishing. Oxon, UK. pp. 63-94.
  17. Madrid, J., F. Hernandez, M. A. Oulgar and J. M. Cid. 1996. Nutritive value of Kochia scoparia L. and ammoniated barley straw for goats. Small Rumin. Res. 19:213-218. https://doi.org/10.1016/0921-4488(95)00758-X
  18. Mansfield, H. R., M. I. Endres and M. D. Stern. 1994. Influence of non-fibrous carbohydrate and degradable intake protein on fermentation by ruminal microorganisms in continuous culture. J. Anim. Sci. 72:2464-2474.
  19. Michalet-Doreau, B. and M. Y. Ould-Bah. 1992. In vitro and in sacco methods for the estimation of dietary nitrogen degradability in the rumen: a review. Anim. Feed Sci. Technol. 40:57-86. https://doi.org/10.1016/0377-8401(92)90112-J
  20. Moore, K. J. and J. H. Cherney. 1986. Digestion kinetics of sequentially extracted cell component of forages. Crop Sci. 26: 1230-1235. https://doi.org/10.2135/cropsci1986.0011183X002600060032x
  21. National Research Council. 2001. Nutrient requirements of dairy cattle. Seventh Revised Edition. Natl. Acad. Sci., Washington, DC, USA.
  22. Riasi, A. and M. Danesh Mesgaran. 2008. Chemical composition and digestible parameters of various halophytes, In: Crop and Forage Production Using Saline Waters (Ed. M. Kafi and M. Ajmal Khan). NAM S and T CENTER, Dehli, India. pp. 97-106.
  23. Riasi, A., M. Danesh Mesgaran, M. D. Stern and M. J. Ruiz Moreno. 2008. Chemical composition, in situ ruminal degradability and post-ruminal disappearance of dry matter and crude protein from the halophytic plants Kochia scoparia, Atriplex dimorphostegia, Suaeda arcuata and Gamanthus gamacarpus. Anim. Feed Sci. Technol. 141:209-219. https://doi.org/10.1016/j.anifeedsci.2007.06.014
  24. Satter, L. D. and L. L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. J. Nut. 32:199-208. https://doi.org/10.1079/BJN19740073
  25. SAS Institute Inc. 1989. SAS/STAT user's guide: Version 6. 4th edn. SAS Institute Inc., Cary, North Carolina.
  26. Stern, M. D., A. Bach and S. Calsamiglia. 1997. Alternative techniques for measuring digestion in ruminants. J. Anim. Sci. 75:2256-2276.
  27. Uden, P., P. H. Robinson and J. Wiseman. 2005. Use of detergent system terminology and criteria for submission of manuscripts on new or revised, analytical methods as well as descriptive information on feed analysis and/or variability. Anim. Feed Sci. Technol. 118:181-186. https://doi.org/10.1016/j.anifeedsci.2004.11.011
  28. Van Soest, P. J., J. B. Roberson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  29. Williams, B. A. 2000. Cumulative gas-production techniques for forage evaluation. In: Forage Evaluation in Ruminant Nutrition (Ed. D. I. Given, E. Owen, R. F. E. Axford and H. M. Omed) CABI Publishing. Oxon, UK. pp. 189-213.
  30. Zinn, R. A. and F. N. Owens. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 66:157-166. https://doi.org/10.4141/cjas86-017