DOI QR코드

DOI QR Code

압전 세라믹 공진자를 이용한 점도 센서

Viscosity Sensor Using Piezoelectric Ceramic Resonators

  • 옥윤포 (한국전기연구원 전지연구센터) ;
  • 강진규 (울산대학교 첨단소재공학부) ;
  • 홍창효 (울산대학교 첨단소재공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Ok, Yun-Po (Korea Electrotechnology Research Center, Battery Research Center) ;
  • Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan) ;
  • Hong, Chang-Hyo (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
  • 투고 : 2012.03.21
  • 심사 : 2012.03.26
  • 발행 : 2012.05.01

초록

A bolt-clamped ultrasonic viscometer was designed and fabricated using a pair of ring-shaped piezoelectric ceramic resonators. For its compactness and low operation frequencies, simulation of piezoelectric resonators was carried out using an ATILA program. Ring-shaped resonators using $0.05Pb(Mn_{1/3}Sb_{2/3})O_3-0.95Pb(Zr_{0.475}Ti_{0.525})O_3$ ceramics were prepared by a conventional ceramic processing, which were then clamped with a pair of metal caps. The fabricated sensor module with a small volume of less than 1 $cm^3$ and an operation frequency as low as 26.5 kHz showed a good relationship between its quality factor and the viscosity of oil.

키워드

참고문헌

  1. P. J. Gilinson Jr., C. R. Dauwalter, and E. W. Merrill, Trans. Soc. Rheol., 7, 319 (1963). https://doi.org/10.1122/1.548960
  2. S. H. Maron, I. M. Krieger, and A. W. Sisko, J. Appl. Phys., 25, 971 (1954). https://doi.org/10.1063/1.1721811
  3. W. P. Mason, W. O. Baker, H. J. McSkimin, and J. H. Heiss, Phys. Rev., 75, 936 (1949). https://doi.org/10.1103/PhysRev.75.936
  4. E. Irion, K. Land, T. Gürtler, and M. Klein, SAE Technical Paper Series, 106, 1390 (1997).
  5. A. Basu, A. Berndorfer, C. Buelna, J. Campbell, K. Ismail, Y. Lin, L. Rodriguez, and S. S. Wang, SAE Technical Paper Series, 70847 (2000).
  6. B. Jakoby, M. Buskies, M. Scherer, S. Henzler, H. Eisenschmid, and O. Schatz, in Advanced Microsystems for Automotive Applications (Springer, Berlin, 2001) p. 157.
  7. A. Agoston, C. Otsch, and B. Jakoby, Sensor. Actuat., A121, 327 (2005).
  8. L. V. Markova, N. K. Myshkin, H. Kong, and H. G. Han, Tribology International, 44, 963 (2011). https://doi.org/10.1016/j.triboint.2011.03.018
  9. K. Zhang, S. H. Choy, L. Zhao, H. Luo, H. L. W. Chan, and Y. Wang, Microelectron. Eng., 88, 1028 (2011). https://doi.org/10.1016/j.mee.2011.01.072
  10. Z. G. Zhu, B. S. Li, G. R. Li, W. Z. Zhang, and Q. R. Yin, Mater. Sci. Eng., B117, 216 (2005).
  11. J. H. Hu, H. L. Li, H. L. W. Chan, and C. L Choy, Sensor. Actuat., A88, 79 (2001).
  12. H. L. Li, J. H. Hu, and H. L. W. Chan, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 51, 1247 (2004). https://doi.org/10.1109/TUFFC.2004.1350952
  13. D. A. Buttrry and M. D. Ward, Chem. Rev., 92, 1355 (1992). https://doi.org/10.1021/cr00014a006
  14. S. J. Martin, G. C. Frye, and K. O. Wessendorf, Sensor. Actuat., A44, 209 (1994).