DOI QR코드

DOI QR Code

Optimum Semi-Continuous Cultivation of Chlorella sp. FC-21 for Production of Biomass: Light Emitting Diodes as a Light Source and High Concentrations of Nitrogen and Phosphate in Culture Media

지속적 바이오매스 생산을 위한 클로렐라 반연속 배양 연구: 발광다이오드(Light Emitting Diode) 광원 및 고농도 인과 질소를 함유한 배지 사용 효과를 중심으로 한 연구

  • Choi, Boram (Department of Environmental Engineering, Pukyong National University) ;
  • Lim, Junhyuk (Department of Environmental Engineering, Pukyong National University) ;
  • Lee, Jaekeun (Department of Environmental Engineering, Pukyong National University) ;
  • Lee, Taeyoon (Department of Environmental Engineering, Pukyong National University)
  • Received : 2012.05.16
  • Accepted : 2012.08.10
  • Published : 2012.08.30

Abstract

This study was performed to determine optimum conditions of semi-continuous cultivation of chlorella sp. FC-21 cultivated under red light emitting diode (LED). Semi-continuous cultivation was conducted using red LED because red LED was found to be the best light source for chlorella sp. FC-21. During cultivation, phosphate and nitrogen were quickly diminished where cell concentration of chlorella was inversely proportional to the concentrations of phosphate and nitrogen in culture solution. To increase the period of dilution of culture solution, additional amounts of phosphate and nitrogen were inserted in the culture solution to increase the concentrations of phosphate and nitrogen. The cell concentrations of chlorella increased in the modified culture, but cell diameter was diminished as the dilution of culture was periodically conducted. When considered the cell concentration and cell diameter during the cultivation, amount of biomass produced was maintained constant.

본 연구는 담수미세조류의 일종인 클로렐라를 적색 발광다이오드를 이용하여 효율적으로 반연속 배양하기 위한 조건을 찾기 위해 수행되었다. 클로렐라 배양에 가장 효율적인 적색 LED를 사용하여 반연속배양을 실시하였으며, 배양 중 인과 질소가 급격히 감소하였으며 이는 클로렐라의 성장과 반비례의 관계를 보여 주었다. 효율적인 반연속 배양을 위해 인과 질소의 농도를 증가시킨 배지를 사용하여 배지교체 주기를 연장시켜 배양 효율성을 높였다. 배지교체 시 클로렐라의 셀 농도는 지속적으로 증가하였으나, 셀 크기는 감소하였다. 셀 농도와 셀 크기를 고려할 때 배양 전과정을 통해 생산되는 바이오매스의 양은 일정하게 유지되었다.

Keywords

Acknowledgement

Supported by : 한국해양기술진흥원

References

  1. Bitton, G., Wastewater Microbiology, John Wiley & Son, N.Y., pp. 68-75(1996).
  2. Tredici, M. R., Carlozzi, P., Zittelli, G. C. and Materassi, R., "A Vertical Alveolar Panel (VAP) for Outdoor Mass Cultivation of Microalgae and Cyanobacteria," Bioresour. Technol., 38(2), 153-159(1991). https://doi.org/10.1016/0960-8524(91)90147-C
  3. Lee, M. C., "The Effects of Chlorella Supplements for Human," Int. J. Coaching Sci., 9(1), 31-40(2007).
  4. Park, J. I., Woo, H. C. and Lee, J. H., "Production of Bio- Energy from Marine Algae: Status and Perspectives," Kor. Chem. Eng. Res., 46(5), 833-844(2008).
  5. Chynoweth, D. P., Turick, C. E., Owens, J. M., Jerger, D. E. and Peck, M. W., "Biochemical Methane Potential of Biomass and Waste Feedstocks," Biomass Bioenergy, 5(1), 95-111(1993). https://doi.org/10.1016/0961-9534(93)90010-2
  6. Lim, Y. K., Shin, S. C., Yim, E. S. and Song, H. O., "The Effective Product Method of Biodiesel," J. Kor. Ind. Eng. Chem., 19(2), 137-144(2008).
  7. Choi, S. H., Oh, Y. T. and So, J. K., "Characterisrics of Exhaust Emission by the Application of Biodiesel Fuel and Oxygenates as an Alternative Fuel in an Agricultural Diesel Engine," J. Biosyst. Eng., 31(6), 457-462(2006). https://doi.org/10.5307/JBE.2006.31.6.457
  8. Burgess, J. G., Iwamoto K., Miura, Y., Takano, H. Matunaga, T., "An Optical Fiber Photobioreactor for Enhanced Production of the Marine Unicellular Alga Isochrysis aff. Galbana T-Iso (UTEX LB2307) Rich in Docosahexaenoic Acid," Appl. Microbiol. Biotechnol., 39(4), 456-459(1993). https://doi.org/10.1007/BF00205032
  9. Ryu, K. O., "Development of Photaobioreacter Design Using LED," J. Industrial Design, 5(3), 19-26(2011).
  10. Ojala, A., "Effects of Temperature and Irradiance on the Growth of Two Freshwater Photosynthetic Cryptophytes," J. Phycol., 29(3), 278-284(1993). https://doi.org/10.1111/j.0022-3646.1993.00278.x
  11. Han, B. P., "A Mechanistic Model of Algal Photo-Inhibition Induced by Photodamage to Photosystem," J. Theor. Biol., 214(2), 519-527(2002). https://doi.org/10.1006/jtbi.2001.2468
  12. Mata, T., Martins, A., Caetano, N., "Microalgae for Biodiesel Production and Other Applications: A Review," Renewable Sustainable Energy Rev., 14(1), 217-232(2010). https://doi.org/10.1016/j.rser.2009.07.020
  13. Jin, H. J., "Optimization of media composition and culture conditions for the growth of Chlorella sp. CMS-1," Dissertation, University of Donga, pp. 1-33.
  14. Hirata, S., Taya, M. and Tone, S., "Characterization of Chlorella Cell Cultures in Batch and Continuous Operations under a Photoautotrophic Condition," J. Chem. Eng., 29(6), 953-959(1996). https://doi.org/10.1252/jcej.29.953
  15. Chiu, S. Y., Tsai, M. T. Kao, C. Y., Ong, S. C. and Lin, C. S., "The air-lift photobioreactors with flow patterning for highdensity cultures of microalgae and carbon dioxide removal," Eng. Life. Sci., 9(3), 254-260(2009). https://doi.org/10.1002/elsc.200800113
  16. Reichert, C. C., Reinehr, C. O., Costa, G. A. V., "Semicontinuous Cultivation of the Cyanobacterium Spirulina platensis in a Closed Photobioreactor," Vrazilian J. Chem. Eng., 23 (1), 23-28(2006). https://doi.org/10.1590/S0104-66322006000100003
  17. Lee, T. Y., Choi, B. R., Lee, J. G. and Lim, J. H., "Cultivation of Chlorella sp. Using Light Emitting Diode," J. Kor. Environ. Eng., 33(8), 591-597(2011). https://doi.org/10.4491/KSEE.2011.33.8.591
  18. Oswald, W. J., "MicroAlgae and Wastewater Treatment, Micro- Algal Biotechnology," Borowitzka, M. A. and Borowitzka, L. J., (eds.), Cambridge University Press, U. K., pp. 305-328(1988).