DOI QR코드

DOI QR Code

Analysis of Attached Bacterial Communities of Biological Activated Carbon Process Using DGGE Method

DGGE 기법을 이용한 생물활성탄 공정의 부착 박테리아 군집분석

  • Son, Hee-Jong (Busan Water Quality Institute, Water Authority) ;
  • Choi, Jin-Taek (Busan Water Quality Institute, Water Authority) ;
  • Son, Hyeng-Sik (Department of Microbiology, Pusan National University) ;
  • Lee, Sang-Joon (Department of Microbiology, Pusan National University)
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 최진택 (부산광역시 상수도사업본부 수질연구소) ;
  • 손형식 (부산대학교 미생물학과) ;
  • 이상준 (부산대학교 미생물학과)
  • Received : 2012.01.11
  • Accepted : 2012.06.29
  • Published : 2012.08.30

Abstract

The concentration of organic compounds was analyzed at each step of BAC (biological activated carbon) process though BDOC (biodegradable dissolved organic carbon) total/rapid/slow. Further, bacteria communities and biomass concentrations measured DGGE (denaturing gradirnt gel electrophoresis) and ATP (adenosine triphosphate) methods were analyzed. The bed volume of steady state is different based on assessment of organic compounds removal. Bed volumes at steady state in DOC, $BDOC_{rapid}$ and $BDOC_{total/slow}$ removal were around 27,500, 15,000 and 32,000, respectively. A biomass didn't change after the bed volume reached 22,500 according to analyzing HPC (heterotrophic plate count) and ATP concentration of bacteria. The concentration of HPC and ATP were $3.3{\times}10^8$ cells/g and $2.14{\mu}g/g$, respectively. The number of the DGGE band were only 5 at the bed volume 8,916, but increased up to 11 at the bed volume 49,632. As operation time increase, bacterial group were more diversity. Four bacteria species including Pseudomonas fluorescens, the uncultured bacterium similar to Acinetobacteria, uncultured Novosphingobium sp. and Flavobacterium frigidarium have detected from the early stages and Proteobacteria group were dominantly detected.

BAC 공정 운전초기부터 부착 박테리아들의 생체량이 정상상태(steady-state)에 도달한 이후까지 $BDOC_{total/rapid/slow}$ 제거율의 변화와 DGGE와 ATP 분석을 통하여 부착 박테리아들의 군집과 생체량을 평가하였다. 용존 유기물질 제거율 평가에 따른 BAC 공정의 정상상태 도달 여부 평가결과를 보면 DOC의 경우 운전 bed volume 27,500 부근에서 BAC 공정이 정상상태에 도달하였고, $BDOC_{rapid}$$BDOC_{total/slow}$의 경우는 각각 운전 bed volume 15,000 부근과 32,000 부근에서 정상상태에 도달하였다. BAC 공정의 운전기간 증가에 따른 HPC 및 ATP 농도 분석을 통한 부착 박테리아들의 생체량 평가결과 bed volume 22,500 이후로 거의 일정한 생체량을 유지하였으며, 이 때 HPC와 ATP 농도는 각각 $3.3{\times}10^8$ cells/g 및 $2.14{\mu}g/g$ 정도로 나타났다. DGGE를 이용하여 운전기간 증가에 따른 BAC 부착 박테리아들의 군집분석 결과 운전초기(bed volume 8,916)의 경우 분석가능한 DGGE band 개수가 5개였으나 운전기간 증가에 따라 분석가능한 DGGE band 개수는 최대 11개로 증가하였다. 또한, DGGE를 이용한 박테리아 군집분석 결과 BAC 운전기간의 증가에 따라 다양한 박테리아 그룹들이 존재하였고, Pseudomonas fluorescens, Acinetobacteria와 유사한 uncultured bacterium, uncultured Novosphingobium sp. 및 Flavobacterium frigidarium은 운전초기 단계부터 지속적으로 부착 박테리아 군집을 형성하였고, 전체적으로 Proteobacteria 그룹이 비교적 높은 비율로 우점하였다.

Keywords

References

  1. 손희종, 유수전, 노재순, 유평종, "정수처리에서의 생물활성탄 공정," 대한환경공학회지, 31(4), 308-323(2009).
  2. Carlson, K. H. and Amy, G. L., "BOM removal during biofiltration," J. AWWA., 90(12), 42-52(1998). https://doi.org/10.1002/j.1551-8833.1998.tb08550.x
  3. Chien, C. C., Kao, C. M., Chen, C. W., Dong, C. D. and Wu, C. Y., "Application of biofiltration system on AOC removal: column and field studies," Chemosphere, 71, 1786-1793(2008). https://doi.org/10.1016/j.chemosphere.2007.12.005
  4. Servais, P., Billen, G. and Bouillot, P., "Biological colonization of granular activated carbon filters in drinking-water treatment," J. Environ. Eng., 120(4), 888-899(1994). https://doi.org/10.1061/(ASCE)0733-9372(1994)120:4(888)
  5. Wakelin, S. A., Page, D. W., Pavelic, P., Gregg, A. L. and Dillon, P. J., "Rich microbial communities inhabit water treatment biofilters and are differentially affected by filter type and sampling depth," Water Sci. Technol.: Water Suppl., 10(2), 145-156(2010). https://doi.org/10.2166/ws.2010.570
  6. Carlson, K. H. and Amy, G. L., "Ozone and biofiltration optimization for multiple objectives," J. AWWA., 93(1), 88-98(2001).
  7. 손희종, 박홍기, 이수애, 정은영, 정철우, "생물활성탄 공정 에서 활성탄 재질에 따른 부착미생물 군집특성," 대한환경공학회지, 27(12), 1311-1320(2005).
  8. Velten, S., Hammes, F., Boller, M. and Egli, T., "Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination," Water Res., 41, 1973-1983(2007). https://doi.org/10.1016/j.watres.2007.01.021
  9. Stewart, M. H., Wolfe, R. L. and Means, E. G., "Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking-water," Appl. Environ. Microbiol., 56(12), 3822-3829(1990).
  10. Dewaters, J. E. and Digiano, F. A., "The influence of ozonated natural organic matter on the biodegradation of a micropollutant in a GAC bed," J. AWWA., 82(8), 69-75(1990). https://doi.org/10.1002/j.1551-8833.1990.tb07011.x
  11. Fonseca, A. C., Summers, R. S. and Hernandez, M. T., "Comparative measurements of microbial activity in drinking water biofilters," Water Res., 35(16), 3817-3824(2001). https://doi.org/10.1016/S0043-1354(01)00104-X
  12. Seredyńska-Sobecka, B., Tomaszewska, M., Janus, M., Morawski, A. W., "Biological activation of carbon filters," Water Res., 40, 355-363(2006). https://doi.org/10.1016/j.watres.2005.11.014
  13. Magic-Knezev, A. and van der Kooij, "Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment," Water Res., 38, 3971-3979(2004). https://doi.org/10.1016/j.watres.2004.06.017
  14. Boon, N., Pycke, B. F. G., Marzorati, M. and Hammes, F., "Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics," Water Res., 45, 6355-6361(2011). https://doi.org/10.1016/j.watres.2011.09.016
  15. 손희종, 노재순, 강임석, "회분식 생물반응기를 이용한 $BDOC_{rapid}$$BDOC_{slow}$ 결정," 한국물환경학회지, 20(4), 357-364(2004).
  16. Kim, G. T., Webster, G., Wimpenny, J. W., Kim, B. H., Kim, H. J. and Weightman, A. J., "Bacterial community structure, compartmentalization and activity in a microbial fuel cell," J. Appl. Microbiol., 101(3), 698-710(2006). https://doi.org/10.1111/j.1365-2672.2006.02923.x
  17. Ryu, E. Y., Kim, M. and Lee, S. J., "Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge," J. Microbiol. Biotechnol., 21(2), 187-191(2011). https://doi.org/10.4014/jmb.1008.08019
  18. Emelko, M. B., Huck, P. M., Coffey, B. M. and Smith, E. F., "Effects of media, backwash, and temperature on fullscale biological filtration," J. AWWA., 98(12), 61-73(2006). https://doi.org/10.1002/j.1551-8833.2006.tb07824.x
  19. Li, L., Zhu, W., Zhang, P., Zhang, Q. and Zhang, Z., "AC/$ O_3$-BAC processes for removing refractory and hazardous pollutants in raw water," J. Hazard. Mater., 135, 129-133(2006). https://doi.org/10.1016/j.jhazmat.2005.11.045
  20. Xu, B., Gao, N. Y., Sun, X. F., Xia, S. J., Siminnot, M. O. and Causserand, C., "Characteristics of organic removal in Huangpu River and treatability with the $O_3$-BAC process," Sep. Purif. Technol., 57, 348-355(2007). https://doi.org/10.1016/j.seppur.2007.03.019
  21. Yapsakli, K. and Cecen, F., "Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters," Proc. Biochem., 45, 355-362(2010). https://doi.org/10.1016/j.procbio.2009.10.005
  22. Niemi, R. M., Heiskanen, I., Heine, R. and Rapala, J., "Previously uncultured $\beta$ -proteobacteria dominate in biologically active granular activated carbon (BAC) filters," Water Res., 43, 5075-5086(2009). https://doi.org/10.1016/j.watres.2009.08.037

Cited by

  1. Evaluation of Biomass of Biofilm and Biodegradation of Dissolved Organic Matter according to Changes of Operation Times and Bed Depths in BAC Process vol.23, pp.6, 2014, https://doi.org/10.5322/JESI.2014.23.6.1101
  2. Evaluation of Biodegradation Characteristics and Kinetic of Parabens and Halogenated Parabens in Biological Activated Carbon (BAC) Process vol.40, pp.7, 2018, https://doi.org/10.4491/KSEE.2018.40.7.290